精英家教网 > 高中数学 > 题目详情
已知函数f(x)的导函数为f(x),且f(x)=2xf′(1)+lnx,则f(1)=
 
考点:导数的运算
专题:导数的概念及应用
分析:已知函数f(x)的导函数为f′(x),利用求导公式对f(x)进行求导,再把x=1代入,即可求解;
解答: 解:∵函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,(x>0)
∴f′(x)=2f′(1)+
1
x

把x=1代入f′(x)可得f′(1)=2f′(1)+1,
解得f′(1)=-1,
∴f(x)=-2x+lnx,
∴f(1)=-2
故答案为:-2
点评:此题主要考查导数的加法与减法的法则,解决此题的关键是对f(x)进行正确求导,把f′(1)看成一个常数,就比较简单了;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sinθ+cosθ等于(  )
A、
2
cos(
π
4
+θ)
B、
2
cos(
π
4
-θ)
C、cos(
π
4
+θ)
D、cos(
π
4
-θ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x满足不等式2(log
1
2
x)2+3≤log
1
2
x7,求函数f(x)=log
1
2
(2x)•log
1
2
(4x)的最值及相应的x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x
2
,x≥0
-x2+3x,x<0
,则不等式f(x)<f(4)的解集为(  )
A、{x|x≥4}
B、{x|x<4}
C、{x|-3<x<0}
D、{x|x<-3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-log2x(0<x≤4),函数F(x)=[f(x)]2-f(
x
2

(1)求函数F(x)的解析式并求出其定义域;
(2)记函数F(x)的最小值为g(a),求g(a)的表达式;
(3)做出函数y=|g(a)|,并根据图象,讨论方程|g(a)|-k=0的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是二次函数,不等式f(x)<0的解集为(0,5),且f(x)在区间[-1,4]上的最大值为12.
(1)求f(x)的解析式; 
(2)若f(x)在区间[a,a+1]上单调,求实数a的取值范围;
(3)当x∈[-1,1]时,y=f(x)的图象恒在y=2x+m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是△ABC边BC上任意一点,N为AM上一点且AN=2NM,若
AN
AB
AC
,则λ+μ=(  )
A、
1
3
B、
2
3
C、1
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>b>0)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为
3
4
c,求双曲线的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

π
4
-
π
4
(2cos2
x
2
+tanx)dx=(  )
A、
π
2
+
2
B、
2
C、
π
2
D、π+
2

查看答案和解析>>

同步练习册答案