18£®Ä³ÖÐѧÑо¿ÐÔѧϰС×飬ΪÁËÑо¿¸ßÖÐÀí¿ÆÑ§ÉúµÄÎïÀí³É¼¨ÊÇ·ñÓëÊýѧ³É¼¨ÓйØÏµ£¬ÔÚ±¾Ð£¸ßÈýÄê¼¶Ëæ»úµ÷²éÁË50ÃûÀí¿ÆÑ§Éú£¬µ÷²é½á¹û±íÃ÷£ºÔÚÊýѧ³É¼¨ÓÅÐãµÄ25ÈËÖÐ16ÈËÎïÀí³É¼¨ÓÅÐ㣬ÁíÍâ9ÈËÎïÀí³É¼¨Ò»°ã£»ÔÚÊýѧ³É¼¨Ò»°ãµÄ25ÈËÖÐÓÐ6ÈËÎïÀí³É¼¨ÓÅÐ㣬ÁíÍâ19ÈËÎïÀí³É¼¨Ò»°ã£®
£¨¢ñ£©ÊÔ¸ù¾ÝÒÔÉÏÊý¾ÝÍê³ÉÒÔÏÂ2¡Á2ÁÐÁª±í£¬²¢ÔËÓöÀÁ¢ÐÔ¼ìÑé˼Ï룬ָ³öÓжà´ó°ÑÎÕÈÏΪ¸ßÖÐÀí¿ÆÑ§ÉúµÄÎïÀí³É¼¨ÓëÊýѧ³É¼¨ÓйØÏµ£»
Êýѧ³É¼¨ÓÅÐãÊýѧ³É¼¨Ò»°ã×ܼÆ
ÎïÀí³É¼¨ÓÅÐã
ÎïÀí³É¼¨Ò»°ã
×ܼÆ
£¨¢ò£©ÒÔµ÷²é½á¹ûµÄƵÂÊ×÷Ϊ¸ÅÂÊ£¬´Ó¸ÃУÊýѧ³É¼¨ÓÅÐãµÄѧÉúÖÐÈÎÈ¡100ÈË£¬Çó100ÈËÖÐÎïÀí³É¼¨ÓÅÐãµÄÈËÊýµÄÊýѧÆÚÍûºÍ±ê×¼²î£®
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk0£©0.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

·ÖÎö £¨¢ñ£©¸ù¾ÝËù¸øÊý¾Ý£¬µÃ³ö2¡Á2ÁÐÁª±í£¬Çó³öK2£¬ÓëÁÙ½çÖµ±È½Ï£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ£¬Êýѧ³É¼¨ÓÅÐãµÄѧÉúÖÐÎïÀí³É¼¨ÓÅÐãµÄ¸ÅÂÊΪ$\frac{16}{25}$£¬Ëæ»ú±äÁ¿X·ûºÏ¶þÏî·Ö²¼£¬¼´¿ÉÇó³öÇó100ÈËÖÐÎïÀí³É¼¨ÓÅÐãµÄÈËÊýµÄÊýѧÆÚÍûºÍ±ê×¼²î£®

½â´ð ½â£º£¨¢ñ£©2¡Á2ÁÐÁª±í

Êýѧ³É¼¨ÓÅÐãÊýѧ³É¼¨Ò»°ã×ܼÆ
ÎïÀí³É¼¨ÓÅÐã16622
ÎïÀí³É¼¨Ò»°ã91928
×ܼÆ252550
ËùÒÔK2=$\frac{50¡Á£¨16¡Á19-6¡Á9£©^{2}}{25¡Á25¡Á22¡Á28}$¡Ö8.117£¾7.879£¬
ËùÒÔÓÐ99.5%°ÑÎÕÈÏΪ¸ßÖÐÀí¿ÆÑ§ÉúµÄÎïÀí³É¼¨ÓëÊýѧ³É¼¨ÓйØÏµ£»
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ£¬Êýѧ³É¼¨ÓÅÐãµÄѧÉúÖÐÎïÀí³É¼¨ÓÅÐãµÄ¸ÅÂÊΪ$\frac{16}{25}$£¬Ëæ»ú±äÁ¿X·ûºÏ¶þÏî·Ö²¼£¬
ËùÒÔÊýѧÆÚÍûE£¨X£©=100¡Á$\frac{16}{25}$=64£¬±ê×¼²î$\sqrt{D£¨X£©}$=$\sqrt{100¡Á\frac{16}{25}¡Á\frac{9}{25}}$=$\frac{24}{5}$£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓúͶþÏî·Ö²¼µÄÊýѧÆÚÍûºÍ±ê×¼²î£¬±¾Ìâ½âÌâµÄ¹Ø¼üÊÇÕýÈ·Àí½â¹Û²âÖµ¶ÔÓ¦µÄ¸ÅÂʵÄÒâÒ壮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èôsin£¨¦Á+¦Â£©cos¦Â-cos£¨¦Á+¦Â£©sin¦Â=0£¬Ôòsin£¨¦Á+2¦Â£©+sin£¨¦Á-2¦Â£©µÈÓÚ£¨¡¡¡¡£©
A£®1B£®-1C£®0D£®¡À1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Éèµãp£¨x£¬y£©ÊÇÇúÏßa|x|+b|y|=1£¨a£¾0£¬b£¾0£©Éϵ͝µã£¬ÇÒÂú×ã$\sqrt{x^2+y^2+2y+1}$+$\sqrt{x^2+y^2-2y+1}$¡Ü2$\sqrt{2}$£¬Ôòa+$\sqrt{2}$bµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[2£¬+¡Þ£©B£®[1£¬2]C£®[1£¬+¡Þ£©D£®£¨0£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Ôò¡°a5£¾0¡±ÊÇ¡°ÊýÁÐ{Sn}ΪµÝÔöÊýÁС±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®É躯Êýf£¨x£©=-x2+ax+3£¨a£¾0£©£¬Çóº¯Êýy=f£¨x£©×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¸ø¶¨ÇøÓòD£º$\left\{\begin{array}{l}{2x-y+k¡Ý0}\\{x+y¡Ý0}\\{x¡Ü2}\end{array}\right.$£¬£¨kΪ·Ç¸ºÊµÊý£©£¬Èô¶ÔÇøÓòDÄÚÈÎÒâÒ»µãN£¨x£¬y£©ºãÓÐ5x+2y-2k2+1£¾0³ÉÁ¢£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{1}{2}$£¬1£©B£®[0£¬1£©C£®[0£¬$\frac{1}{2}$£©D£®[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬Æäµ¼º¯ÊýΪf¡ä£¨x£©£¬Èôf¡ä£¨x£©£¼f£¨x£©£¬ÇÒf£¨x+1£©=f£¨3-x£©£¬f£¨2015£©=2£¬Ôò²»µÈʽf£¨x£©£¼2ex-1µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬$\frac{1}{e}$£©B£®£¨e£¬+¡Þ£©C£®£¨-¡Þ£¬0£©D£®£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¼¯ºÏ A={x||x+1|¡Ü2}£¬B={x|y=lg£¨x2-x-2£©}£¬ÔòA¡É∁RB£¨¡¡¡¡£©
A£®[3£¬-1£©B£®[3£¬-1]C£®[-1£¬1]D£®£¨-1£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªËæ»ú±äÁ¿¦Î·þ´ÓÕý̬·Ö²¼N£¨0£¬¦Ò2£©£¬P£¨¦Î£¾2£©=0.023£¬ÔòP£¨-2¡Ü¦Î¡Ü2£©=£¨¡¡¡¡£©
A£®0.997B£®0.954C£®0.488D£®0.477

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸