精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=-x2+ax+3(a>0),求函数y=f(x)最大值.

分析 根据二次函数f(x)的图象与性质,得出函数y=f(x)的最大值以及取值最大值时x的值.

解答 解:∵函数f(x)=-x2+ax+3(a>0)是二次函数,
图象是抛物线,且开口向下,对称轴是x=$\frac{a}{2}$;
∴当x=$\frac{a}{2}$时,函数f(x)取得最大值是
f($\frac{a}{2}$)=-${(\frac{a}{2})}^{2}$+a×$\frac{a}{2}$+3=$\frac{{a}^{2}}{4}$+3;
∴函数y=f(x)的最大值是$\frac{1}{4}$a2+3.

点评 本题考查了利用二次函数的图象与性质求函数最值的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0)图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)设α,β∈[-$\frac{π}{2}$,0],f(3α+π)=$\frac{10}{13}$,f(3β+$\frac{5π}{2}$)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1与圆C2的极坐标方程及两圆交点的极坐标;
(Ⅱ)求圆C1与圆C2的公共弦的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=f(x)=$\frac{x+2}{{x}^{2}+x+1}$(x>-2),求$\frac{1}{y}$的取值范围和此函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在函数f(x)=alnx-(x-1)2的图象上,横坐标在区间(1,2)内变化的点处的切线斜率均大于1,则实数a的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.[6,+∞)D.(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学研究性学习小组,为了研究高中理科学生的物理成绩是否与数学成绩有关系,在本校高三年级随机调查了50名理科学生,调查结果表明:在数学成绩优秀的25人中16人物理成绩优秀,另外9人物理成绩一般;在数学成绩一般的25人中有6人物理成绩优秀,另外19人物理成绩一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为高中理科学生的物理成绩与数学成绩有关系;
数学成绩优秀数学成绩一般总计
物理成绩优秀
物理成绩一般
总计
(Ⅱ)以调查结果的频率作为概率,从该校数学成绩优秀的学生中任取100人,求100人中物理成绩优秀的人数的数学期望和标准差.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C的方程为x2+y2-2x+2y-2=0,若以直线y=kx+2(k∈Z)上任意一点为圆心,以1为半径的圆与圆C至多有一个公共点,则k的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:
支持不支持合计
中型企业8040120
小型企业240200440
合计320240560
(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0250.010
k03.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=$\sqrt{2}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案