精英家教网 > 高中数学 > 题目详情
11.下列函数中,满足f(-x)+f(x)=0的单调递增函数是(  )
A.f(x)=x3B.f(x)=-x-1C.f(x)=log2xD.f(x)=2x

分析 根据函数的关系式可得函数为奇函数,C,D显然不是奇函数,
f(x)=-x-1在定义域内有增有减.η

解答 解:f(-x)+f(x)=0,
∴f(x)=-f(-x),
∴函数为奇函数,排除C,D;
函数为增函数,排除C选项,
故选:A.

点评 考查了奇函数的性质和函数的单调性.属于常规题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在由数字0,1,2,3,4,5组成的没有重复数字的四位数中,不能被5整除的数共有(  )
A.372B.180C.192D.300

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,点P是圆x2+y2=4上一动点.PD⊥x轴于点D,记满足$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OD}$)的动点Q的轨迹为C.
(1)求轨迹C的方程;
(2)过原点O的直线l与曲线C交于M,N两点,A(-1,-$\frac{1}{2}$)是一定点,求△MAN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设p:|x-a|>3,q:(x+1)(2x-1)≥0,若¬p是q的充分不必充要条件,则实数a的取值范围是(-∞,-4]∪[$\frac{7}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0),满足f(0)=f($\frac{π}{3}$),且函数在[0,$\frac{π}{2}$]上有且只有一个零点,则f(x)的最小正周期为(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求10cot(arc cot3+arccot7+arccot13+arccot21)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=x-2,则(  )
A.f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin1)<f(cos1)D.f(sin$\frac{π}{2}$)>f(cos$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有3名男生、4名女生,按下述要求,分别求出其不同的排列的种数.
(1)选其中5人担任班级监督员;
(2)选出2名男生、3名女生共5人担任5种不同的班委职务,男生甲必须担任班长或学习委员;
(3)选出5人排成一行,其中女生必须相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,左、右顶点分别为A、B,P是椭圆上一点,记直线PA、PB的斜率为k1,k2,且k1k2=-$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m(k≠0)与椭圆C交于M、N两点,以M、N为直径的圆经过原点,且线段MN的垂直平分线在y轴上的截距为-$\frac{1}{5}$,求直线l的方程.

查看答案和解析>>

同步练习册答案