1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬×ó¡¢ÓÒ¶¥µã·Ö±ðΪA¡¢B£¬PÊÇÍÖÔ²ÉÏÒ»µã£¬¼ÇÖ±ÏßPA¡¢PBµÄбÂÊΪk1£¬k2£¬ÇÒk1k2=-$\frac{1}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+m£¨k¡Ù0£©ÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÒÔM¡¢NΪֱ¾¶µÄÔ²¾­¹ýÔ­µã£¬ÇÒÏß¶ÎMNµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàΪ-$\frac{1}{5}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃc=1£¬ÉèP£¨m£¬n£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí£¬¼ÆËã¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©½«Ö±Ïßl£ºy=kx+m£¨k¡Ù0£©´úÈëÍÖÔ²x2+2y2-2=0£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÒÔ¼°Á½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬»¯¼òÕûÀí£¬½â·½³Ì¿ÉµÃk£¬m£¬½ø¶øµÃµ½ËùÇóÖ±Ïߵķ½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃc=1£¬¼´a2-b2=1£¬
ÉèP£¨m£¬n£©£¬¿ÉµÃ$\frac{{m}^{2}}{{a}^{2}}$+$\frac{{n}^{2}}{{b}^{2}}$=1£¬
¼´$\frac{{n}^{2}}{{m}^{2}-{a}^{2}}$=-$\frac{{b}^{2}}{{a}^{2}}$£¬
ÓÉÌâÒâ¿ÉµÃA£¨-a£¬0£©£¬B£¨a£¬0£©£¬
¼´ÓÐk1k2=$\frac{n}{m+a}$•$\frac{n}{m-a}$=-$\frac{{b}^{2}}{{a}^{2}}$=-$\frac{1}{2}$£¬
½âµÃa=$\sqrt{2}$£¬b=1£¬
¿ÉµÃÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨2£©½«Ö±Ïßl£ºy=kx+m£¨k¡Ù0£©´úÈëÍÖÔ²x2+2y2-2=0£¬
¿ÉµÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬
ÅбðʽΪ16k2m2-8£¨1+2k2£©£¨m2-1£©£¾0£¬
¼´ÓÐ1+2k2£¾m2£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
¿ÉµÃx1+x2=-$\frac{4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$£¬
y1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2£¬
ÓÉÌâÒâOM¡ÍON£¬¿ÉµÃx1x2+y1y2=0£¬
¼´Îª£¨1+k2£©x1x2+km£¨x1+x2£©+m2=0£¬
¼´£¨1+k2£©•$\frac{2{m}^{2}-2}{1+2{k}^{2}}$+km£¨-$\frac{4km}{1+2{k}^{2}}$£©+m2=0£¬
»¯¼ò¿ÉµÃ3m2=2+2k2£¬¢Ù
ÓÖMNµÄÖеãΪ£¨-$\frac{2km}{1+2{k}^{2}}$£¬$\frac{m}{1+2{k}^{2}}$£©£¬
ÓÉMNµÄ´¹Ö±Æ½·ÖÏß¾­¹ýµã£¨0£¬-$\frac{1}{5}$£©£¬¿ÉµÃ
´¹Ö±Æ½·ÖÏߵķ½³ÌΪy=-$\frac{1}{k}$x-$\frac{1}{5}$£¬
´úÈëÖеã×ø±ê¿ÉµÃ$\frac{m}{1+2{k}^{2}}$=-$\frac{1}{k}$•£¨-$\frac{2km}{1+2{k}^{2}}$£©-$\frac{1}{5}$£¬
»¯¼ò¿ÉµÃ5m=1+2k2£¬¢Ú
ÓÉ¢Ù¢Ú½âµÃm=$\frac{5+\sqrt{37}}{6}$£¨¸ºµÄÉáÈ¥£©£¬k=¡À$\frac{\sqrt{57+15\sqrt{37}}}{6}$£¬
¼ìÑéÅбðʽ´óÓÚ0³ÉÁ¢£¬
Ö±ÏßlµÄ·½³ÌΪy=¡À$\frac{\sqrt{57+15\sqrt{37}}}{6}$x+$\frac{5+\sqrt{37}}{6}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓõãÂú×ãÍÖÔ²·½³ÌÒÔ¼°Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²éÖ±Ïߵķ½³ÌµÄÇ󷨣¬×¢ÒâÁªÁ¢Ö±ÏߺÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÒÔ¼°Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁк¯ÊýÖУ¬Âú×ãf£¨-x£©+f£¨x£©=0µÄµ¥µ÷µÝÔöº¯ÊýÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x3B£®f£¨x£©=-x-1C£®f£¨x£©=log2xD£®f£¨x£©=2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑ֪˫ÇúÏßCµÄÁ½Ìõ½¥½üÏßΪl1£¬l2£¬¹ýÓÒ½¹µãF×÷FB¡Îl1ÇÒ½»l2ÓÚµãB£¬¹ýµãB×÷BA¡Íl2ÇÒ½»l1ÓÚµãA£¬ÈôAF¡ÍxÖᣬÔòË«ÇúÏßCµÄÀëÐÄÂÊΪ$\frac{2\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£ºÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬¹ýÓÒ½¹µãF£¨1£¬0£©µÄÖ±ÏßlÓëÍÖÔ²E½»ÓÚM¡¢NÁ½µã£¬ÇÒÂú×ã$\overrightarrow{MF}$=$\frac{1}{2}$$\overrightarrow{FN}$£®
£¨1£©µ±Ö±ÏßlµÄÇãб½ÇΪ45¡ãʱ£¬ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©Çó¡÷OMNÃæ»ýµÄ×î´óÖµ¼°´ËʱÍÖÔ²EµÄÀëÐÄÂÊe£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªx£¬yÂú×ã$\left\{\begin{array}{l}{x+2y¡Ü4}\\{x-y¡Ü1}\\{x+2¡Ý0}\end{array}\right.$£¬Ä¿±êº¯Êýz=1-2x-yµÄ×î´óֵΪa£¬×îСֵΪb£¬Ôòa-b=£¨¡¡¡¡£©
A£®10B£®12C£®14D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èç¹û0£¼a£¼1£¼b£¬c=logab+logba+2£¨¡¡¡¡£©
A£®c£¾0B£®c¡Ý0C£®c£¼0D£®c¡Ü0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑz0=2+2i£¬|z-z0|=$\sqrt{2}$£¬µ±z=1+iʱ£¬|z|ÓÐ×îСֵ£¬×îСֵΪ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊÇÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÈôA=$\frac{2¦Ð}{3}$£¬b=$\sqrt{2}$£¬¡÷ABCµÄÃæ»ýΪ$\sqrt{3}$£¬ÔòaµÄֵΪ$\sqrt{14}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{log_2}x\;\;£¨\;x£¾0£©\\{x^2}+x\;\;£¨x¡Ü0£©\end{array}\right.$£¬Ôò$f£¨f£¨\frac{1}{2}£©£©$=0£¬·½³Ìf£¨x£©=2µÄ½âΪ-2»ò4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸