·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃc=1£¬ÉèP£¨m£¬n£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬»¯¼òÕûÀí£¬¼ÆËã¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©½«Ö±Ïßl£ºy=kx+m£¨k¡Ù0£©´úÈëÍÖÔ²x2+2y2-2=0£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÒÔ¼°Á½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬»¯¼òÕûÀí£¬½â·½³Ì¿ÉµÃk£¬m£¬½ø¶øµÃµ½ËùÇóÖ±Ïߵķ½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃc=1£¬¼´a2-b2=1£¬
ÉèP£¨m£¬n£©£¬¿ÉµÃ$\frac{{m}^{2}}{{a}^{2}}$+$\frac{{n}^{2}}{{b}^{2}}$=1£¬
¼´$\frac{{n}^{2}}{{m}^{2}-{a}^{2}}$=-$\frac{{b}^{2}}{{a}^{2}}$£¬
ÓÉÌâÒâ¿ÉµÃA£¨-a£¬0£©£¬B£¨a£¬0£©£¬
¼´ÓÐk1k2=$\frac{n}{m+a}$•$\frac{n}{m-a}$=-$\frac{{b}^{2}}{{a}^{2}}$=-$\frac{1}{2}$£¬
½âµÃa=$\sqrt{2}$£¬b=1£¬
¿ÉµÃÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨2£©½«Ö±Ïßl£ºy=kx+m£¨k¡Ù0£©´úÈëÍÖÔ²x2+2y2-2=0£¬
¿ÉµÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬
ÅбðʽΪ16k2m2-8£¨1+2k2£©£¨m2-1£©£¾0£¬
¼´ÓÐ1+2k2£¾m2£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
¿ÉµÃx1+x2=-$\frac{4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$£¬
y1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2£¬
ÓÉÌâÒâOM¡ÍON£¬¿ÉµÃx1x2+y1y2=0£¬
¼´Îª£¨1+k2£©x1x2+km£¨x1+x2£©+m2=0£¬
¼´£¨1+k2£©•$\frac{2{m}^{2}-2}{1+2{k}^{2}}$+km£¨-$\frac{4km}{1+2{k}^{2}}$£©+m2=0£¬
»¯¼ò¿ÉµÃ3m2=2+2k2£¬¢Ù
ÓÖMNµÄÖеãΪ£¨-$\frac{2km}{1+2{k}^{2}}$£¬$\frac{m}{1+2{k}^{2}}$£©£¬
ÓÉMNµÄ´¹Ö±Æ½·ÖÏß¾¹ýµã£¨0£¬-$\frac{1}{5}$£©£¬¿ÉµÃ
´¹Ö±Æ½·ÖÏߵķ½³ÌΪy=-$\frac{1}{k}$x-$\frac{1}{5}$£¬
´úÈëÖеã×ø±ê¿ÉµÃ$\frac{m}{1+2{k}^{2}}$=-$\frac{1}{k}$•£¨-$\frac{2km}{1+2{k}^{2}}$£©-$\frac{1}{5}$£¬
»¯¼ò¿ÉµÃ5m=1+2k2£¬¢Ú
ÓÉ¢Ù¢Ú½âµÃm=$\frac{5+\sqrt{37}}{6}$£¨¸ºµÄÉáÈ¥£©£¬k=¡À$\frac{\sqrt{57+15\sqrt{37}}}{6}$£¬
¼ìÑéÅбðʽ´óÓÚ0³ÉÁ¢£¬
Ö±ÏßlµÄ·½³ÌΪy=¡À$\frac{\sqrt{57+15\sqrt{37}}}{6}$x+$\frac{5+\sqrt{37}}{6}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓõãÂú×ãÍÖÔ²·½³ÌÒÔ¼°Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²éÖ±Ïߵķ½³ÌµÄÇ󷨣¬×¢ÒâÁªÁ¢Ö±ÏߺÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÒÔ¼°Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨x£©=x3 | B£® | f£¨x£©=-x-1 | C£® | f£¨x£©=log2x | D£® | f£¨x£©=2x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 10 | B£® | 12 | C£® | 14 | D£® | 16 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | c£¾0 | B£® | c¡Ý0 | C£® | c£¼0 | D£® | c¡Ü0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com