精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的前n项和为Sn,且满足a1=2,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1,(n∈N*).
(1)判断a2,a8,S4是否为等比数列的连续三项,并说明理由.
(2)设bn=$\frac{{a}_{n}}{{2}^{{a}_{n}+1}}$,求数列{bn}的前n项和Tn

分析 (1)根据等差数列的定义可得{$\frac{{S}_{n}}{n}$}是以2为首项,以1为公差的等差数列,即可求出Sn=n2+n,再求出数列{an}的通项公式,再利用等比数列的性质判断即可,
(2)化简bn=n•($\frac{1}{2}$)2n,利用错位相减法即可求出前n项和.

解答 解:(1)a2,a8,S4不是等比数列的连续三项.
理由:∵a1=2,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1,
∴$\frac{{S}_{1}}{1}$=$\frac{{a}_{1}}{1}$=2,
∴{$\frac{{S}_{n}}{n}$}是以2为首项,以1为公差的等差数列,
∴$\frac{{S}_{n}}{n}$=2+n-1=n+1,
∴Sn=n2+n,
∴Sn-1=(n-1)2+(n-1),
∴an=Sn-Sn-1=2n,
当n=1时,成立,
∴an=2n,
∴a2=4,a8=16,S4=42+4=20,
∴a82=156≠a2S4=160
∴a2,a8,S4不是等比数列的连续三项;
(2)bn=$\frac{{a}_{n}}{{2}^{{a}_{n}+1}}$=$\frac{2n}{{2}^{2n+1}}$=n•($\frac{1}{2}$)2n
∴Tn=b1+b2+…+bn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)4+3•($\frac{1}{2}$)6+…+n•($\frac{1}{2}$)2n
∴$\frac{1}{4}$Tn=1•($\frac{1}{2}$)4+2•($\frac{1}{2}$)6+3•($\frac{1}{2}$)8+…+n•($\frac{1}{2}$)2n+2
∴$\frac{3}{4}$Tn=($\frac{1}{2}$)2+($\frac{1}{2}$)4+($\frac{1}{2}$)6+…+•($\frac{1}{2}$)2n-n•($\frac{1}{2}$)2n+2
=$\frac{\frac{1}{4}(1-\frac{1}{{2}^{2n}})}{1-\frac{1}{4}}$-n•($\frac{1}{2}$)2n+2=$\frac{1}{3}$-($\frac{1}{3}$+$\frac{n}{4}$)•($\frac{1}{2}$)2n
∴Tn=$\frac{4}{9}$-$\frac{4+3n}{9}$•($\frac{1}{2}$)2n

点评 本题考查了等差数列的定义和数列的递推公式和等比数列的性质,以及错位相减法求和,考查了数学的运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,b2=a2+c2-$\sqrt{3}$ac
(1)求B的大小;
(2)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合$A=\left\{{x\left|{y=lgx}\right.}\right\},B=\left\{{y|y=\sqrt{x-1}}\right\}$,则A∪B=(  )
A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值叫做函数f(x)的下确界.现已知定义在R上的偶函数f(x)满足f(1-x)=f(1+x),当x∈[0,1]时,f(x)=-3x2+2,则f(x)的下确界为(  )
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=lnx,若4f′(x)+x≥a恒成立,则a的取值范围是(  )
A.a≥4B.a≤4C.a≥2$\sqrt{2}$D.a≤2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex,(其中e是自然对数的底数).
(1)?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$]使得不等式f(x1)+g(x2)≥m成立,试求实数m的取值范围;
(2)若x>-1,求证:f(x)-g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={0,1},B={x|(x+2)(x-1)<0,x∈Z},则A∪B=(  )
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆C1和双曲线C2焦点相同,且离心率互为倒数,F1,F2是它们的公共焦点,P是椭圆和双曲线在第一象限的交点,若∠F1PF2=60°,则椭圆C1的离心率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(2,0),过点Q(1,0)的直线与椭圆C相交于A,B两点,设点P(4,3),记PA,PB的斜率分别为k1,k2
(Ⅰ)求椭圆C的方程;
(Ⅱ)探讨k1+k2是否为定值?如果是,求出该定值,如果不是,求出k1+k2的取值范围.

查看答案和解析>>

同步练习册答案