精英家教网 > 高中数学 > 题目详情
3.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,b2=a2+c2-$\sqrt{3}$ac
(1)求B的大小;
(2)求cosA+sinC的取值范围.

分析 (1)利用余弦定理求出cosB即可得出B的大小;
(2)用A表示出C,再利用和差公式化简得出cosA+sinC关于A的三角函数,求出A的范围利用正弦函数的性质即可得出答案.

解答 解:(1)∵b2=a2+c2-$\sqrt{3}$ac,∴a2+c2-b2=$\sqrt{3}$ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{\sqrt{3}}{2}$.
∵0$<B<\frac{π}{2}$,
∴B=$\frac{π}{6}$.
(2)由(1)知C=$\frac{5π}{6}$-A,
∴cosA+sinC=cosA+sin($\frac{5π}{6}$-A)=$\frac{3}{2}$cosA+$\frac{\sqrt{3}}{2}$sinA=$\sqrt{3}$sin(A+$\frac{π}{3}$),
∵△ABC为锐角三角形,
∴$\left\{\begin{array}{l}{0<A<\frac{π}{2}}\\{0<\frac{5π}{6}-A<\frac{π}{2}}\end{array}\right.$,解得$\frac{π}{3}<A<\frac{π}{2}$.
∴$\frac{2π}{3}<A+\frac{π}{3}<\frac{5π}{6}$,∴$\frac{1}{2}$<sin(A+$\frac{π}{3}$)<$\frac{\sqrt{3}}{2}$,
∴$\frac{\sqrt{3}}{2}<$$\sqrt{3}$sin(A+$\frac{π}{3}$)<$\frac{3}{2}$,
∴cosA+sinC的取值范围为($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

点评 本题考查了余弦定理,三角函数的恒等变换,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.图中,已知课程A,B,C,D,E为人文类课程,课程F,G,H为自然科学类课程.为进一步研究学生选课意向,结合图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组M”).

(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.
(ⅰ)设随机变量X表示选出的4名同学中选择课程G的人数,求随机变量X的分布列;
(ⅱ)设随机变量Y表示选出的4名同学参加科学营的费用总和,求随机变量Y的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,若(1-i)(a+i)=3-bi(a,b∈R),则a+b等于(  )
A.3B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知过点$(2,\sqrt{2})$且离心率为$\frac{{\sqrt{2}}}{2}$的椭圆C的中心在原点,焦点在x轴上.
(1)求椭圆C的方程;
(2)设点P是椭圆的左准线与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,记椭圆C的左,右焦点分别为F1,F2,上下两个顶点分别为B2,B1.当线段MN的中点落在四边形F1B1F2B2内(包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求证:平面PEC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,则z=3x+y的最小值为(  )
A.-1B.1C.0D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=5,AB=6,M是CC1中点,CC1=8.
(1)求证:平面AB1M⊥平面A1ABB1
(2)求平面AB1M与平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x,y满足约束条件$\left\{{\begin{array}{l}{2x+y-2≥0}\\{x-y+2≥0}\\{4x-y-4≤0}\end{array}}\right.$,若z=ax-y有最小值6,则实数a等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且满足a1=2,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1,(n∈N*).
(1)判断a2,a8,S4是否为等比数列的连续三项,并说明理由.
(2)设bn=$\frac{{a}_{n}}{{2}^{{a}_{n}+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案