精英家教网 > 高中数学 > 题目详情
18.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求证:平面PEC⊥平面PCD.

分析 (Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG?平面PCE,AF?平面PCE,AF∥平面PCE;
(Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.

解答 证明:(Ⅰ)取PC的中点G,连结FG、EG,
∴FG为△CDP的中位线,FG∥CD,FG=$\frac{1}{2}$CD.
∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=$\frac{1}{2}$CD.
∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,
∴AF∥EG又EG?平面PCE,AF?平面PCE,
∴AF∥平面PCE;  
(Ⅱ)∵PA=AD.∴AF⊥PD
PA⊥平面ABCD,∴PA⊥CD,
又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD
∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC
由(Ⅰ)得EG∥AF,∴EG⊥面PDC
又EG?平面PCE,∴平面PEC⊥平面PCD.

点评 本题考查了空间线面平行、面面垂直的判定,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的所有编号是(  )
A.B.①②C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m的取值范围是(  )
A.[3,6)B.[1,2)C.[2,4)D.(2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的函数,其导函数为f'(x),若2f(x)-f'(x)<2,f(0)=2018,则不等式f(x)>2017e2x+1(其中e为自然对数的底数)的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,A,B,E是⊙O上的点,过E点的⊙O的切线与直线AB交于点P,∠APE的平分线和AE,BE分别交于点C,D.求证:
(1)DE=CE;
(2)$\frac{CA}{CE}=\frac{PE}{PB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,b2=a2+c2-$\sqrt{3}$ac
(1)求B的大小;
(2)求cosA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.17世纪日本数学家们对这个数学关于体积方法的问题还不了解,他们将体积公式“V=kD3”中的常数k称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V=kD3,其中,在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长,假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k1,k2,k3=(  )
A.$\frac{π}{4}$:$\frac{π}{6}$:1B.$\frac{π}{6}$:$\frac{π}{4}$:2C.1:3:$\frac{12}{π}$D.1:$\frac{3}{2}$:$\frac{6}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,其中前三段的频率成等比数列.
(Ⅰ)求图中实数a的值;
(Ⅱ)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于80分的人数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=lnx,若4f′(x)+x≥a恒成立,则a的取值范围是(  )
A.a≥4B.a≤4C.a≥2$\sqrt{2}$D.a≤2$\sqrt{2}$

查看答案和解析>>

同步练习册答案