10£®17ÊÀ¼ÍÈÕ±¾Êýѧ¼ÒÃǶÔÕâ¸öÊýѧ¹ØÓÚÌå»ý·½·¨µÄÎÊÌ⻹²»Á˽⣬ËûÃǽ«Ìå»ý¹«Ê½¡°V=kD3¡±Öеij£Êýk³ÆÎª¡°Á¢Ô²Êõ¡±»ò¡°Óñ»ýÂÊ¡±£¬´´ÓÃÁËÇó¡°Óñ»ýÂÊ¡±µÄ¶ÀÌØ·½·¨¡°»áÓñÊõ¡±£¬ÆäÖУ¬DΪֱ¾¶£¬ÀàËÆµØ£¬¶ÔÓڵȱßÔ²Öù£¨Öá½ØÃæÊÇÕý·½ÐεÄÔ²Öù½Ð×öµÈ±ßÔ²Öù£©¡¢Õý·½ÌåÒ²ÓÐÀàËÆµÄÌå»ý¹«Ê½V=kD3£¬ÆäÖУ¬ÔڵȱßÔ²ÖùÖУ¬D±íʾµ×ÃæÔ²µÄÖ±¾¶£»ÔÚÕý·½ÌåÖУ¬D±íʾÀⳤ£¬¼ÙÉèÔËÓôˡ°»áÓñÊõ¡±£¬ÇóµÃµÄÇò¡¢µÈ±ßÔ²Öù¡¢Õý·½ÌåµÄ¡°Óñ»ýÂÊ¡±·Ö±ðΪk1£¬k2£¬k3=£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$£º$\frac{¦Ð}{6}$£º1B£®$\frac{¦Ð}{6}$£º$\frac{¦Ð}{4}$£º2C£®1£º3£º$\frac{12}{¦Ð}$D£®1£º$\frac{3}{2}$£º$\frac{6}{¦Ð}$

·ÖÎö ÀûÓÃÇòµÄÌå»ý¹«Ê½Çó³ö${k}_{1}=\frac{¦Ð}{6}$£»ÀûÓõȱßÔ²ÖùµÄÌå»ý¹«Ê½Çó³ö${k}_{2}=\frac{¦Ð}{4}$£»ÀûÓÃÕý·½ÌåµÄÌå»ý¹«Ê½Çó³ök3=1£®ÓÉ´ËÄÜÇó³ök1£ºk2£ºk3µÄÖµ£®

½â´ð ½â£ºÔÚÇòÖУ¬${V}_{1}=\frac{4}{3}¦Ð{R}^{3}$=$\frac{4}{3}¦Ð£¨\frac{D}{2}£©^{3}$=$\frac{¦Ð}{6}{D}^{3}$=${k}_{1}{D}^{3}$£¬½âµÃ${k}_{1}=\frac{¦Ð}{6}$£»
ÔڵȱßÔ²ÖùÖУ¬${V}_{2}=¦Ð£¨\frac{D}{2}£©^{2}$$•D=\frac{¦Ð}{4}•{D}^{3}$=${k}_{2}{D}^{3}$£¬½âµÃ${k}_{2}=\frac{¦Ð}{4}$£¬
ÔÚÕý·½ÌåÖУ¬${V}_{3}={D}^{3}={k}_{3}{D}^{3}$£¬½âµÃk3=1£®
¡àk1£ºk2£ºk3=$\frac{¦Ð}{6}£º\frac{¦Ð}{4}£º1$=1£º$\frac{3}{2}$£º$\frac{6}{¦Ð}$£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÇò¡¢µÈ±ßÔ²Öù¡¢Õý·½ÌåµÄ¡°Óñ»ýÂÊ¡±µÄ±ÈÖµµÄÇ󷨣¬¿¼²éÇò¡¢µÈ±ßÔ²Öù¡¢Õý·½ÌåµÄÌå»ý¹«Ê½µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢¿Õ¼äÏëÏóÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬º¯ÊýÓë·½³Ì˼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨x£¬1£©£¬$\overrightarrow{b}$=£¨3£¬-2£©£¬Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Ôòx=£¨¡¡¡¡£©
A£®-3B£®$-\frac{3}{2}$C£®$\frac{2}{3}$D£®$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®´üÖÐÓÐ2¸ö»ÆÇò3¸ö°×Çò£¬¼×ÒÒÁ½ÈË·Ö±ð´ÓÖÐÈÎȡһÇò£¬È¡µÃ»ÆÇòµÃ1·Ö£¬È¡µÃ°×ÇòµÃ2·Ö£¬Á½ÈË×Ü·ÖºÍΪX£¬ÔòX=3µÄ¸ÅÂÊÊÇ$\frac{3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ËÄÀâ×¶P-ABCDµÄµ×ÃæÊǾØÐΣ¬PA¡ÍÆ½ÃæABCD£¬E£¬F·Ö±ðÊÇAB£¬PDµÄÖе㣬ÇÒPA=AD£®
£¨¢ñ£©ÇóÖ¤£ºAF¡ÎÆ½ÃæPEC£»
£¨¢ò£©ÇóÖ¤£ºÆ½ÃæPEC¡ÍÆ½ÃæPCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÉèiÊÇÐéÊýµ¥Î»£¬$\overline{z}$±íʾ¸´ÊýzµÄ¹²éÊý£¬Èôz=2-i£¬Ôòz+i$\overline{z}$ÔÚ¸´Æ½ÃæÄÚËù¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬CC1¡ÍÆ½ÃæABC£¬AC=BC=5£¬AB=6£¬MÊÇCC1Öе㣬CC1=8£®
£¨1£©ÇóÖ¤£ºÆ½ÃæAB1M¡ÍÆ½ÃæA1ABB1£»
£¨2£©ÇóÆ½ÃæAB1MÓëÆ½ÃæABCËù³É¶þÃæ½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®½«º¯Êýy=sin£¨2x-$\frac{¦Ð}{6}$£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{1}{6}$¸ö×îСÕýÖÜÆÚºó£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯Êý½âÎöʽΪ£¨¡¡¡¡£©
A£®y=sin£¨2x+$\frac{¦Ð}{6}$£©B£®y=sin2xC£®y=sin£¨2x+$\frac{¦Ð}{3}$£©D£®y=sin£¨2x-$\frac{¦Ð}{3}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ÒÑÖªµãDÔÚ±ßABÉÏ£¬AD=3DB£¬cosA=$\frac{4}{5}$£¬cos¡ÏACB=$\frac{5}{13}$£¬BC=13£®
£¨1£©ÇócosBµÄÖµ£»
£¨2£©ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²C£º£¨x+2£©2+£¨y-m£©2=3£¬ÈôÔ²C´æÔÚÒÔGΪÖеãµÄÏÒAB£¬ÇÒAB=2GO£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ∅£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸