精英家教网 > 高中数学 > 题目详情
19.如图,在△ABC中,已知点D在边AB上,AD=3DB,cosA=$\frac{4}{5}$,cos∠ACB=$\frac{5}{13}$,BC=13.
(1)求cosB的值;
(2)求CD的长.

分析 (1)在△ABC中,求出sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$.,sin∠ACB=$\frac{12}{13}$.
可得cosB=-cos(A+∠ACB)=sinAsin∠ACB-cosAcosB;
(2)在△ABC中,由正弦定理得,AB=$\frac{BC}{sinA}$sin∠ACB.
在△BCD中,由余弦定理得,CD=$\sqrt{B{D}^{2}+B{C}^{2}-2BD•BCcosB}$.

解答 解:(1)在△ABC中,cosA=$\frac{4}{5}$,A∈(0,π),
所以sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$.
同理可得,sin∠ACB=$\frac{12}{13}$.
所以cosB=cos[π-(A+∠ACB)]=-cos(A+∠ACB)
=sinAsin∠ACB-cosAcos∠ACB
=$\frac{3}{5}×\frac{12}{13}-\frac{4}{5}×\frac{5}{13}=\frac{16}{65}$;
(2)在△ABC中,由正弦定理得,AB=$\frac{BC}{sinA}$sin∠ACB=$\frac{13}{\frac{3}{5}}×\frac{12}{13}=20$.
又AD=3DB,所以DB=$\frac{1}{4}AB=5$.
在△BCD中,由余弦定理得,CD=$\sqrt{B{D}^{2}+B{C}^{2}-2BD•BCcosB}$
=$\sqrt{{5}^{2}+1{3}^{2}-2×5×13×\frac{16}{65}}$=9$\sqrt{2}$.

点评 本题考查了正余弦定理、三角恒等变形,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三个元素,则实数m的取值范围是(  )
A.[3,6)B.[1,2)C.[2,4)D.(2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.17世纪日本数学家们对这个数学关于体积方法的问题还不了解,他们将体积公式“V=kD3”中的常数k称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V=kD3,其中,在等边圆柱中,D表示底面圆的直径;在正方体中,D表示棱长,假设运用此“会玉术”,求得的球、等边圆柱、正方体的“玉积率”分别为k1,k2,k3=(  )
A.$\frac{π}{4}$:$\frac{π}{6}$:1B.$\frac{π}{6}$:$\frac{π}{4}$:2C.1:3:$\frac{12}{π}$D.1:$\frac{3}{2}$:$\frac{6}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,其中前三段的频率成等比数列.
(Ⅰ)求图中实数a的值;
(Ⅱ)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于80分的人数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{2x+y≤4}\end{array}}\right.$,z=x+y+3与z=x+ny取得最大值的最优解相同,则实数n的取值范围是(  )
A.{1}B.$({-∞,\frac{1}{2}})$C.$({\frac{1}{2},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合$A=\left\{{x\left|{y=lgx}\right.}\right\},B=\left\{{y|y=\sqrt{x-1}}\right\}$,则A∪B=(  )
A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某研究性学习小组调查研究性别对喜欢吃甜食的影响,部分统计数据如表:
  女生 男生 合计
 喜欢吃甜食 8 4 12
 不喜欢吃甜食216 18
 合计 10 20 30
附表:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
经计算K2=10,则下列选项正确的是(  )
A.有99.5%的把握认为性别对喜欢吃甜食无影响
B.有99.5%的把握认为性别对喜欢吃甜食有影响
C.有99.9%的把握认为性别对喜欢吃甜食无影响
D.有99.9%的把握认为性别对喜欢吃甜食有影响

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=lnx,若4f′(x)+x≥a恒成立,则a的取值范围是(  )
A.a≥4B.a≤4C.a≥2$\sqrt{2}$D.a≤2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数g(x)的导函数g'(x)=ex,且g(0)g'(1)=e,(其中e为自然对数的底数).若?x∈(0,+∞),使得不等式$g(x)<\frac{x-m+3}{{\sqrt{x}}}$成立,则实数m的取值范围是(  )
A.(-∞,1)B.(-∞,3)C.(3,+∞)D.(-∞,4-e)

查看答案和解析>>

同步练习册答案