| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
分析 三人中有人达标但没有全部达标的对立事件是“3人都达标或全部都没有达标”,由此能求出结果.
解答 解:三人中有人达标但没有全部达标的对立事件是“3人都达标或全部都没有达标”,
∵甲、乙、丙三人能达标的概率分别为P、$\frac{2}{3}$、$\frac{3}{5}$,
三人中有人达标但没有全部达标的概率为$\frac{2}{3}$,
∴$\frac{2}{3}×\frac{3}{5}p+\frac{1}{3}×\frac{2}{5}(1-p)=1-\frac{2}{3}$,
解得p=$\frac{3}{4}$.
故选:B.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥0或x≠1} | B. | {x|x≥0或 x≠±1} | C. | {x|x≥且x≠1} | D. | {x|x≥0且x≠1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{3}{2},6$) | B. | ($\frac{3}{2},2$) | C. | (1,6) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
| 甲班频数 | 5 | 6 | 4 | 4 | 1 |
| 乙班频数 | 1 | 3 | 6 | 5 | 5 |
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | |||
| 成绩不优良 | |||
| 总计 |
| P(K2≥0) | 0.10 | 0.05 | 0.025 | 0.010 |
| K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com