| A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
分析 利用正弦定理和△ABC的面积公式建立关系求出a,b,c个关系.再利用余弦定理求cosB的值.
解答 解:由题意:△ABC的面积为a2sinB,
由$\frac{1}{2}$acsinB=a2sinB,可得:c=2a,
∵bsinB-asinA=$\frac{3}{2}asinC$,
由正弦定理可得:b2-a2=$\frac{3}{2}$ac,
则有:${b}^{2}-{a}^{2}=\frac{3}{2}×2{a}^{2}$,
解得:b=2a.
由余弦定理变形:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}=\frac{{a}^{2}+4{a}^{2}-{4a}^{2}}{2a×2a}=\frac{1}{4}$,
故选:D.
点评 本题考查了正弦定理和△ABC的面积公式以及余弦定理的综合运用能力和计算能力.
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | (0,3] | C. | [0,2] | D. | [1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{16}$ | B. | 2 | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com