精英家教网 > 高中数学 > 题目详情
12.在△ABC中,内角A,B,C的对边分别是a,b,c,若bsinB-asinA=$\frac{3}{2}asinC$,且△ABC的面积为a2sinB,则cosB等于(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 利用正弦定理和△ABC的面积公式建立关系求出a,b,c个关系.再利用余弦定理求cosB的值.

解答 解:由题意:△ABC的面积为a2sinB,
由$\frac{1}{2}$acsinB=a2sinB,可得:c=2a,
∵bsinB-asinA=$\frac{3}{2}asinC$,
由正弦定理可得:b2-a2=$\frac{3}{2}$ac,
则有:${b}^{2}-{a}^{2}=\frac{3}{2}×2{a}^{2}$,
解得:b=2a.
由余弦定理变形:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}=\frac{{a}^{2}+4{a}^{2}-{4a}^{2}}{2a×2a}=\frac{1}{4}$,
故选:D.

点评 本题考查了正弦定理和△ABC的面积公式以及余弦定理的综合运用能力和计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{10}{3}$B.$\frac{16}{3}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对任意实数a,b定义运算“⊙”:a⊙$b=\left\{\begin{array}{l}{a,a-b≤2}\\{b,a-b>2}\end{array}\right.$,设f(x)=3x+1⊙(1-x),若函数f(x)与函数g(x)=x2-6x在区间(m,m+1)上均为减函数,则实数m的取值范围是(  )
A.[-1,2]B.(0,3]C.[0,2]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲、乙、丙三位同学将独立参加英语听力测试,根据平时训练的经验,甲、乙、丙三人能达标的概率分
别为P、$\frac{2}{3}$、$\frac{3}{5}$,若将三人中有人达标但没有全部达标的概率为$\frac{2}{3}$,则P等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,圆C的极坐标是ρ=2asinθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-\frac{3}{5}t+a}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数).
(1)若a=2,M为直线l与x轴的交点,N是圆C上一动点,求|MN|的最大值;
(2)若直线l被圆C截得的弦长为$2\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.国庆期间某商场新进某品牌电视机30台,为检测这批品牌电视机的安全系数,现采用系统抽样的方法从中抽取5台进行检测,若第一组抽出的号码是4,则第4组抽出的号码为22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(m,2)$,$\overrightarrow b=(-1,n)$,(n>0)且$\overrightarrow a•\overrightarrow b=0$,点P(m,n)在圆x2+y2=5上,则|2$\overrightarrow a+\overrightarrow b|$等于$\sqrt{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的离心率为e,抛物线y2=2px(p>0)的焦点为(e,0),则p的值为(  )
A.$\frac{1}{16}$B.2C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知log183=a,log518=b,用a,b表示log3690=$\frac{1+b}{2b-2ab}$.

查看答案和解析>>

同步练习册答案