精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=sin($\frac{πn}{3}$),(n∈N*),试求f(1)+f(2)+…+f(2015)的值.

分析 根据正弦函数的周期性求出函数的周期,利用周期性进行求解即可.

解答 解:函数f(x)的周期T=$\frac{2π}{\frac{π}{3}}=6$,
则f(1)+f(2)+f(3)+f(4)+f(5)+f(6)
=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sin$π+sin\frac{4π}{3}$+sin$\frac{5π}{3}$+sin2π=0,
则f(1)+f(2)+…+f(2015)=336×(f(1)+f(2)+f(3)+f(4)+f(5)+f(6))-f(2016)
=-f(2016)=-sin$\frac{2016π}{3}$=0.

点评 本题主要考查三角函数值的计算,根据正弦函数的周期性求出函数的周期是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知点F为抛物线C:y2=2px(p>0)的焦点,M(4,t)为抛物线C上的点,且|MF|=5,则抛物线C的方程为(  )
A.y2=xB.y2=2xC.y2=4xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=10,则弦AB的长为(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sinωx(ω>0)在区间[$-\frac{π}{3},\frac{π}{4}$]上的最小值是-1,则ω的最小值为(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设sinα是sinθ,cosθ的等差中项,sinβ是sinθ,cosθ的等比中项,求证:cos4β-4cos4α=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知tanα=2,则tan2α的值为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.根据下列条件解三角形.
(1)已知:∠A=60°,∠B=45°,c=10.
(2)已知:a=4,b=5,c=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:
①函数y=x3-x2+1图象上两点A与B的横坐标分别为1,2,则φ(A,B)>$\sqrt{3}$;
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
③设点A、B是抛物线y=x2+1上不同的两点,则φ(A,B)≤2;
④设曲线y=ex上不同两点A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<1恒成立,则实数t 的取值范围是(-∞,1).以上正确命题的序号为(  )
A.①②B.②③C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}是公差不为-1的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案