精英家教网 > 高中数学 > 题目详情
3.定义域为R的函数f(x)满足以下条件:
(1)对于任意x∈R,f(x)+f(-x)=0;
(2)对于任意x1、x2∈[1,3],当x2>x1时,有f(x2)>f(x1)>0;
则以下不等式不一定成立的是(  )
A.f(2)>f(0)B.f(2)>f(1)C.f(-3)<f(-1)D.f(4)>f(2)

分析 根据条件判断函数的奇偶性和单调性,根据函数奇偶性和单调性之间的关系进行转化比较即可.

解答 解:由f(x)+f(-x)=0;得f(-x)=-f(x),则函数f(x)是奇函数;
对于任意x1、x2∈[1,3],当x2>x1时,有f(x2)>f(x1)>0;
则此时函数f(x)为增函数,在[-3,-1]上是增函数,
A.f(2)>0,f(0)=0,则f(2)>f(0)成立,
B.f(2)>f(1)成立,
C.f(-3)<f(-1)成立,
D.f(4)与f(2)的关系不确定,
故不一定成立的是D,
故选:D

点评 本题主要考查函数值的大小比较,根据函数奇偶性和单调性的关系进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.春夏季节是流感多发期,某地医院近30天每天入院治疗的人数依次构成数列{an},已知a1=1,a2=2,且满足an+2-an=1+(-1)n(n∈N*),则该医院30天入院治疗流感的人数共有255人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(2cos(x-$\frac{π}{6}$),-1),$\overrightarrow{b}$=(sin(x+$\frac{π}{6}$),$\frac{\sqrt{3}}{2}$)
(1)求f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的单调递增区间;
(2)设函数g(x)=f(x)+$\sqrt{3}$cos2x,且g($\frac{α}{2}$)=$\frac{2}{3}$,0<α<π,求g($\frac{π}{4}$+$\frac{α}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:log3$\frac{27}{5}$+log32-log3$\frac{6}{5}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知cosα=-$\frac{4}{5}$,求sinα+tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式x2-3x+1≤0的解集是(  )
A.{x|x≥$\frac{3-\sqrt{5}}{2}$}B.{x|x≤$\frac{3+\sqrt{5}}{2}$}C.{x|$\frac{3-\sqrt{5}}{2}$≤x≤$\frac{3+\sqrt{5}}{2}$}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2x3-6x2+ax+7在区间(0,2)内是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.多项式(1+mx)n+(1+nx)m(m,n∈N+)的展开式中,x2项系数不小于12mn,那么mn的最小值为(  )
A.4B.3C.16D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若不等式ax2+bx+3>0的解集为(-$\frac{1}{2}$,3),则a,b分别为-2;5.

查看答案和解析>>

同步练习册答案