精英家教网 > 高中数学 > 题目详情
1.已知正项数列{an}的前n项和为Sn,且$\sqrt{{S}_{n}}$是1与an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和,证明:$\frac{2}{3}$≤Tn<1(n∈N*).

分析 (Ⅰ)由等差中项,列出Sn与an的关系式,根据${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$求解出数列{an}的通项公式.
(Ⅱ)数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的结构分析,采用裂项相消求数列前n项和Tn,结合数列单调性及简单的放缩法,求得范围.

解答 解:(Ⅰ)n=1时,a1=1--------(1分)
n≥2时,由$\sqrt{{S}_{n}}$是1与an的等差中项,
∴$4{S}_{n-1}=({a}_{n-1}+1)^{2}$,
又$4{S}_{n}=({a}_{n}+1)^{2}$,
两式相减得(an+an-1)(an-an-1-2)=0
∵an>0
∴an-an-1=2
∴{an}是以1为首项,2为公差的等差数列,即an=2n-1.--------(6分)
(Ⅱ)∵$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}-\frac{1}{2n+1}$
∴Tn=$(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+$$(\frac{1}{2n-1}-\frac{1}{2n+1})$
=$1-\frac{1}{2n+1}$.------10
∵n∈N+
∴Tn<1
又∵Tn递增.
∴${T}_{n}≥{T}_{1}=\frac{2}{3}$,
综上,$\frac{2}{3}≤{T}_{n}<1$成立.--------(12分)

点评 考查等差中项,前n项和与通项的关系,裂项相消法求前n项和,放缩法求范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知集合 A={x|-1<x<1},B={x|0<x<2},集合 C={x|x>a}.
(1)求集合A UCRB;
(2)若A∩C≠φ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于函数y=f(x),如果f(x0)=x0,我们就称实数x0是函数f(x)的不动点.设函数f(x)=3+log2x,则函数f(x)的不动点一共有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知⊙O方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,求弦AB中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α∈($\frac{π}{2}$,π),且sinα=$\frac{\sqrt{5}}{5}$,则tan(2α+$\frac{π}{4}$)=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}中,Sn为其前n项和,已知S2016=2016,且$\frac{{S}_{2016}}{2016}$-$\frac{{S}_{16}}{16}$=2000,则a1等于(  )
A.-2017B.-2016C.-2015D.-2014

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z=$\frac{2i}{i-1}$+i3(i为虚数单位)的共轭复数为(  )
A.1-2iB.1+2iC.i-1D.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)若x>-1,求y=$\frac{{{x^2}+7x+10}}{x+1}$的最小值;
(2)若a,b,c都是正数,且a+b+c=1,求证(1-a)(1-b)(1-c)≥8abc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={1,2},B={2,4},则A∪B=(  )
A.{2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

同步练习册答案