精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow{a}$=(-1,-1),$\overrightarrow{b}$=(2,x),若$\overrightarrow{a}$•$\overrightarrow{b}$=1,则x=(  )
A.-3B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

分析 利用向量数量积公式能求出结果.

解答 解:∵$\overrightarrow{a}$=(-1,-1),$\overrightarrow{b}$=(2,x),$\overrightarrow{a}$•$\overrightarrow{b}$=1,
∴$\overrightarrow{a}•\overrightarrow{b}$=-1×2-x=1,
解得x=-3.
故选:A.

点评 本题考查实数值的求法,考查向量的数量积公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若cosθ<0,且tanθ=$\sqrt{ta{n}^{2}θ}$,那么θ 是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角BACD,则四面体ABCD的四个顶点所在球的体积为(  )
A.$\frac{125}{12}π$B.$\frac{125}{9}π$C.$\frac{125}{6}π$D.$\frac{125}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程log2x+2x-1=0的根必落在区间(  )
A.($\frac{1}{8}$,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若对任意不等于1的正数a,函数f(x)=ax+2-3的图象都过点P,则点P的坐标是(-2,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.光明商店销售某种商品,每件商品的进价是60元,销售过程中发现:当每件商品售价75元时,每天可售出85件,如果每件商品售价90元时,则每天可售出70件.假设每天售出的商品件数p(件)与每件售价x(元)之间的函数关系为p=kx+b(每件售价不低于进价,且货源充足).
(1)求出p与x之间的函数关系式.
(2)设每天的利润是y(元),若不考虑其他费用,则每件定价为多少时每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线y=ax-2和3x-(a+2)y+1=0互相垂直,a=(  )
A.1B.-3C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2$\sqrt{3}sin({x+\frac{π}{4}})cos({x+\frac{π}{4}})+sin2x+a$的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求g(x)在x∈[0,$\frac{π}{2}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率,并补全这个频率分布直方图;                                    
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

同步练习册答案