分析 (1)由条件利用任意角的三角函数的定义,求得sinα和cosβ的值.
(2)由条件利用二倍角的三角公式求得sin2α、cos2α的值,再利用两角和的正弦公式求得sin(2α+β)=sin2αcosβ=cos2αsinβ 的值.
解答
解:(1)由三角函数定义知sinα=$\frac{1}{\sqrt{3+1}}$=$\frac{1}{2}$,cosβ=$\frac{5}{\sqrt{25+144}}$=$\frac{5}{13}$.
(2)由于0<α,β<$\frac{π}{2}$,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{3}}{2}$,sinβ=$\sqrt{{1-sin}^{2}β}$=$\frac{12}{13}$,
∴sin2α=2sinαcosα=$\frac{\sqrt{3}}{2}$,cos2α=2cosα2-1=$\frac{7}{8}$,
∴sin(2α+β)=sin2αcosβ=cos2αsinβ=$\frac{\sqrt{3}}{2}×\frac{5}{13}$+$\frac{7}{8}×\frac{12}{13}$=$\frac{5\sqrt{3}+21}{26}$.
点评 本题主要考查任意角的三角函数的定义,二倍角的三角公式,两角和的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 各个面都是三角形的几何体是三棱锥 | |
| B. | 以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 | |
| C. | 圆锥的顶点与底面圆周上的任意一点的连线都是母线 | |
| D. | 棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com