精英家教网 > 高中数学 > 题目详情
8.现有编号依次为:1,2,3,…,n的n级台阶,小明从台阶1出发顺次攀登,他攀登的步数通过抛掷骰子来决定;骰子的点数小于5时,小明向前一级台阶;骰子的点数大于等于5时,小明向前两级台阶.
(1)若抛掷骰子两次,小明到达的台阶编号记为ξ,求ξ的分布列和数学期望;
(2)求小明恰好到达编号为6的台阶的概率.

分析 (1)由已知可得随机变量ξ的值可能为3,4,5,进而可由古典概型概念公式,求出随机变量ξ的分布列,代入数学期望公式,可得数学期望
(2)小王恰好到达6有三种情形,分别求出相对应的概率,根据概率公式计算即可.

解答 解:(1)ξ的可能取值为3,4,5…(1分)$P(ξ=3)=\frac{2}{3}×\frac{2}{3}=\frac{4}{9}$,$P(ξ=4)=C_2^1\frac{2}{3}×\frac{1}{3}=\frac{4}{9}$,$P(ξ=5)=\frac{1}{3}×\frac{1}{3}=\frac{1}{9}$…(4分)
ξ的分布列为

ξ345
p$\frac{4}{9}$$\frac{4}{9}$$\frac{1}{9}$
$Eξ=3×\frac{4}{9}+4×\frac{4}{9}+5×\frac{1}{9}=\frac{11}{3}$…(7分)
(2)小王恰好到达6有三种情形
①抛掷骰子五次,出现点数全部小于5,概率${P_1}={({\frac{2}{3}})^5}=\frac{32}{243}$;        …(8分)
②抛掷骰子四次,出现点数三次小于5,一次大于等于5,概率为${P_2}=C_4^1{({\frac{2}{3}})^3}\frac{1}{3}=\frac{32}{81}$;…(9分)
③抛掷骰子三次,出现点数一次小于5,两次大于等于5,概率${P_3}=C_3^2{({\frac{1}{3}})^2}\frac{2}{3}=\frac{2}{9}$…(10分)
所以$P=\frac{32}{243}+\frac{32}{81}+\frac{2}{9}=\frac{182}{243}$
即小王恰好到达正整数6的概率为$\frac{182}{243}$.                            …(12分)

点评 本题考查的知识点是离散型随机变量的分布列与数学期望,等可能事件的概率,是概率问题的综合应用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(Ⅰ)给出一组函数:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1,则h(x)是否为f1(x),f2(x)的生成函数?并说明理由.
(Ⅱ)设f1(x)=x(x>0),f2(x)=$\frac{1}{x}$(x>0),取a>0,b>0,生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1.试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(Ⅰ)若点A(1,$\frac{2\sqrt{3}}{3}$),B($\frac{\sqrt{6}}{2}$,1)均在椭圆C上,求椭圆C的标准方程;
(Ⅱ)已知过点(0,1),斜率为k(k<0)的直线l与圆O:x2+y2=$\frac{1}{2}$相切,且与椭圆C交于M,N两点,若以MN为直径的圆恒过原点O,则当a∈[$\frac{\sqrt{42}}{6}$,$\frac{\sqrt{6}}{2}$]时,求椭圆C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年国家已全面放开“二胎”政策,但考虑到经济问题,很多家庭不打算生育二孩,为了解家庭收入与生育二孩的意愿是否有关,现随机抽查了某四线城市50个一孩家庭,它们中有二孩计划的家庭频数分布如下表:
家庭月收入
(单位:元)
2千以下2千~5千5千~8千8千~一万1万~2万2万以上
调查的总人数510151055
有二孩计划的家庭数129734
(Ⅰ)由以上统计数据完成如下2×2列联表,并判断是否有95%的把握认为是否有二孩计划与家庭收入有关?说明你的理由.
收入不高于8千的家庭数收入高于8千的家庭数合计
有二孩计划的家庭数
无二孩计划的家庭数
合计
(Ⅱ)若二孩的性别与一孩性别相反,则称该家庭为“好字”家庭,设每个有二孩计划的家庭为“好字”家庭的概率为$\frac{1}{2}$,且每个家庭是否为“好字”家庭互不影响,设收入在8千~1万的3个有二孩计划家庭中“好字”家庭有X个,求X的分布列及数学期望.
下面的临界值表供参考:
 P(K2≥k) 0.15 0.10 0.05 0.025
 k 2.072 2.706 3.841 5.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于函数f(x)=5sin3x+5$\sqrt{3}$cos3x,下列说法正确的是(  )
A.函数f(x)关于x=$\frac{5}{9}$π对称
B.函数f(x)向左平移$\frac{π}{18}$个单位后是奇函数
C.函数f(x)关于点($\frac{π}{18}$,0)中心对称
D.函数f(x)在区间[0,$\frac{π}{20}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线y=kx+2与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1相切,则斜率k的值是(  )
A.$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$±\frac{\sqrt{6}}{3}$D.$±\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知单位圆x2+y2=1与x轴正半轴交于点P,当圆上一动点Q从P出发沿逆时针方向旋转一周回到P点后停止运动,设OQ扫过的扇形对应的圆心角为x rad,当0<x<2π时,设圆心O到直线PQ的距离为y,y与x的函数关系式y=f(x)是如图所示的程序框图中的①②两个关系式
(Ⅰ)写出程序框图中①②处得函数关系式;
(Ⅱ)若输出的y值为$\frac{1}{2}$,求点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F交抛物线C于A、B两点.且以AB为直径的圆M与直线y=-1相切于点N.
(1)求C的方程;
(2)若圆M与直线x=-$\frac{3}{2}$相切于点Q,求直线l的方程和圆M的方程.

查看答案和解析>>

同步练习册答案