精英家教网 > 高中数学 > 题目详情
如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为4,点A,B,C为椭圆上的三个点,A为椭圆的右端点,BC过中心O,且|BC|=2|AB|,S△ABC=3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P,Q是椭圆上位于直线AC同侧的两个动点(异于A,C),且满足∠PBC=∠QBA,试讨论直线BP与直线BQ斜率之间的关系,并求证直线PQ的斜率为定值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)先求出B的坐标,代入椭圆方程,求出b,即可求椭圆的标准方程;
(Ⅱ)设直线BP:y-
3
2
=k(x-1)
代入椭圆方程
x2
4
+
y2
3
=1
,求出P的坐标,用-k代入得xQ=
4k2+12k-3
3+4k2
yQ=
-12k2+6k
3+4k2
+
3
2
,利用斜率公式,即可求证直线PQ的斜率为定值.
解答: 解:(Ⅰ)∵|BC|=2|AB|,   ∴S△OAB=
1
2
S△ABC=
3
2
…2 分
又△OAB是等腰三角形,所以B(1, 
3
2
)
…3 分
把B点带入椭圆方程
x2
4
+
y2
b2
=1
,求得b2=3.…4 分
∴椭圆方程为
x2
4
+
y2
3
=1
…5 分
(Ⅱ)由题易得直线BP、BQ斜率均存在,
又∠PBC=∠QBA,所以kBP=-kBQ…7 分
设直线BP:y-
3
2
=k(x-1)
代入椭圆方程
x2
4
+
y2
3
=1

化简得(3+4k2)x2-8k(k-
3
2
)x+4k2-12k-3=0
…9 分
其一解为1,另一解为xP=
4k2-12k-3
3+4k2
…10 分
可求yp=
-12k2-6k
3+4k2
+
3
2
…11 分
用-k代入得xQ=
4k2+12k-3
3+4k2
yQ=
-12k2+6k
3+4k2
+
3
2
…12 分
kPQ=
yP-yQ
xP-xQ
=
1
2
为定值.…13 分
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查斜率的计算,正确求出P,Q的坐标是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图的程序图中,输出结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程是
x=t
y=t+1
(t是参数),以原点为极点,x轴的正半轴为极轴,圆C的极坐标方程为ρ=-6cosθ,则圆心C到直线l的距离为(  )
A、2
B、
2
C、2
2
D、3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)与双曲线C2的公共点左右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2.若椭圆C1的离心率e=
3
8
,则双曲线C2的离心率是(  )
A、
5
4
B、
3
2
C、
5
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点A(1,
2
)是离心率为
2
2
的椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)上的一点,斜率为
2
的直线BD交椭圆C于B,D两点,且A、B、D三点互不重合.
(1)求椭圆C的方程;
(2)求证:直线AB,AD的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<β<α<π.
(1)若
a
b
,求
a
+
3
b
 |
的值;
(2)设向量
c
=(0,
3
)
,且
a
+
b
=
c
,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2=4y.
(1)若点P是直线y=2x-5上任意一点,过P作C的两条切线PE,PF,切点分别为E,F,M为EF的中点,求证:PM⊥x轴
(2)在(1)的条件下,直线EF是否恒过一定点?若是,求出定点;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x-sin2x
(1)求函数f(x)的最小正周期和值域;
(2)已知△ABC的内角A,B,C所对的边分别为a,b,c,若a=2,b=
2
,且f(
A
2
)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,S7=49,a4和a8的等差中项为11.
(Ⅰ)求an及Sn
(Ⅱ)证明:当n≥2时,有
1
S1
+
1
S2
+…+
1
Sn
7
4

查看答案和解析>>

同步练习册答案