| A. | h(x)<g(x) | B. | h(x)>g(x) | C. | h(x)+g(a)>g(x)+h(a) | D. | h(x)+g(b)>g(x)+h(b) |
分析 比较大小常用方法就是作差,构造函数F(x)=h(x)-g(x),研究F(x)在给定的区间[a,b]上的单调性,F(x)在给定的区间[a,b]上是增函数从而F(x)<F(b),整理后得到答案.
解答 解:设F(x)=h(x)-g(x),
∵在[a,b]上h'(x)<g'(x),
F′(x)=h′(x)-g′(x)<0,
∴F(x)在给定的区间[a,b]上是减函数.
∴当x<b时,F(x)>F(b),
即h(x)-g(x)>h(b)-g(b)
即h(x)+g(b)>g(x)+h(b)
故选:D.
点评 本题考查的知识点是利用导数研究函数的单调性,其中根据已知条件构造函数F(x)=h(x)-g(x),进而判断其单调性是解答本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | f(a)>eaf(0) | B. | f(a)<eaf(0) | C. | f(a)>f(0) | D. | f(a)<f(0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-2i | B. | 1+2i | C. | -1+2i | D. | -1-2i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,3] | B. | $[{-\frac{2}{3},3}]$ | C. | $[{-\frac{2}{3},\frac{10}{3}}]$ | D. | $[{-1,\frac{10}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 40 | C. | 60 | D. | 80 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n+1 | B. | 2n-3 | C. | 2n-1 | D. | 2n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 份(x) | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 |
| 水上狂欢节届编号x | 1 | 2 | 3 | 4 | 5 |
| 外地游客人数y(单位:十万) | 0.6 | 0.8 | 0.9 | 1.2 | 1.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-12,14] | B. | [-52,14] | C. | (-∞,-12]∪[14,+∞) | D. | (-∞,-52]∪[14,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com