精英家教网 > 高中数学 > 题目详情
16.已知在三角形ABC中,AB=AC,BC=4,∠BAC=120°,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若P是BC边上的动点,则$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范围是(  )
A.[-1,3]B.$[{-\frac{2}{3},3}]$C.$[{-\frac{2}{3},\frac{10}{3}}]$D.$[{-1,\frac{10}{3}}]$

分析 利用余弦定理求得AB、AC的值,再根据E是线段BC较靠近点C的一个四等分点,利用两个向量的加减法的法则,以及其几何意义,两个向量数量积的运算求得 $\overrightarrow{AP}$•$\overrightarrow{AE}$=$\frac{12λ-2}{3}$,λ∈[0,1],从而求得它的取值范围.

解答 解:设AB=AC=x,则由BC=4,∠BAC=120°,
利用余弦定理可得16=x2+x2-2x•xcos120°,∴x=$\sqrt{\frac{16}{3}}$.
∴$\overrightarrow{AB}•\overrightarrow{AC}$=x•x•cos120°=-$\frac{8}{3}$.
∵$\overrightarrow{BE}$=3$\overrightarrow{EC}$,∴E是线段BC较靠近点C的一个四等分点,
若P是BC边上的动点,则$\overrightarrow{BP}$=λ$\overrightarrow{BC}$,λ∈[0,1],
∴$\overrightarrow{AP}$•$\overrightarrow{AE}$=($\overrightarrow{AB}$+$\overrightarrow{BP}$)•($\overrightarrow{AB}$+$\overrightarrow{BE}$)=($\overrightarrow{AB}$+λ$\overrightarrow{BC}$)•($\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{BC}$)
=[(1-λ)$\overrightarrow{AB}$+λ$\overrightarrow{AC}$]•($\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$ )
=$\frac{1-λ}{4}$•${\overrightarrow{AB}}^{2}$+($\frac{3-3λ}{4}$+$\frac{λ}{4}$)$\overrightarrow{AB}•\overrightarrow{AC}$+$\frac{3λ}{4}$${\overrightarrow{AC}}^{2}$ 
=$\frac{1-λ}{4}$•$\frac{16}{3}$+$\frac{3-2λ}{4}$•(-$\frac{8}{3}$)+$\frac{3λ}{4}$•$\frac{16}{3}$=$\frac{12λ-2}{3}$,
故当λ=0时,$\overrightarrow{AP}$•$\overrightarrow{AE}$ 取得最小值为-$\frac{2}{3}$,当λ=1时,$\overrightarrow{AP}$•$\overrightarrow{AE}$ 取得最大值为$\frac{10}{3}$,
故选:C.

点评 本题主要考查余弦定理,两个向量的加减法的法则,以及其几何意义,两个向量数量积的运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.直线l:y=kx+1与抛物线y2=4x恰有一个公共点,则实数k的值为(  )
A.0B.1C.-1或0D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.把八进制数67(8)转化为三进制数为2001(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知中心在原点、焦点在x轴上的椭圆经过点(2,1).试求其长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式-x2+4x-4<0的解集为(  )
A.RB.ΦC.(-∞,2)∪(2,+∞)D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知平面ABC⊥平面BCDE,△DEF与△ABC分别是棱长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,DE∥BC,BC⊥CD,CD=1,点G为△ABC的重心,N为AB中点,$\overrightarrow{AM}$=λ$\overrightarrow{AF}$(λ∈r,λ>0),
(Ⅰ)当λ=$\frac{2}{3}$时,求证:GM∥平面DFN
(Ⅱ)若直线MN与CD所成角为$\frac{π}{3}$,试求二面角M-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数h(x),g(x)在[a,b]上可导,且h′(x)<g′(x),则当a<x<b时,有(  )
A.h(x)<g(x)B.h(x)>g(x)C.h(x)+g(a)>g(x)+h(a)D.h(x)+g(b)>g(x)+h(b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中,真命题是(  )
A.?x∈R,x2≥x
B.命题“若x=1,则x2=1”的逆命题
C.0,β0∈R,使得sin(α00)=sinα0+sinβ0
D.命题“若x≠y,则sinx≠siny”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若数列{an}满足$({2n+3}){a_{n+1}}-({2n+5}){a_n}=({2n+3})({2n+5})lg({1+\frac{1}{n}})$,且a1=5,则数列$\left\{{\frac{a_n}{2n+3}}\right\}$的第100项为(  )
A.2B.3C.1+lg99D.2+lg99

查看答案和解析>>

同步练习册答案