精英家教网 > 高中数学 > 题目详情
5.下列命题中,真命题是(  )
A.?x∈R,x2≥x
B.命题“若x=1,则x2=1”的逆命题
C.0,β0∈R,使得sin(α00)=sinα0+sinβ0
D.命题“若x≠y,则sinx≠siny”的逆否命题

分析 举出反例x∈(0,1)可判断A;写出原命题的逆命题,可判断B;举出正例α00=0,可判断C;写出原命题的逆否命题,可判断D.

解答 解:当x∈(0,1)时,x2<x,故?x∈R,x2≥x错误;
命题“若x=1,则x2=1”的逆命题为命题“若x2=1,则x=1”,为假命题;
00=0∈R,使得sin(α00)=sinα0+sinβ0,正确;
命题“若x≠y,则sinx≠siny”的逆否命题为命题“若sinx=siny,则x=y”,为假命题;
故选:C

点评 本题以命题的真假判断与应用为载体,考查了全称命题,特称命题,四种命题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知Sn是等差数列{an}的前n项和,a1=2,a1+a4=a5,若Sn>32,则n的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知在三角形ABC中,AB=AC,BC=4,∠BAC=120°,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若P是BC边上的动点,则$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范围是(  )
A.[-1,3]B.$[{-\frac{2}{3},3}]$C.$[{-\frac{2}{3},\frac{10}{3}}]$D.$[{-1,\frac{10}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}的前n项和为Sn,公差为2,且a1,S2,S4成等比数列,则数列{an}的通项公式an等于(  )
A.2n+1B.2n-3C.2n-1D.2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.中国柳州从2011年起每年国庆期间都举办一届国际水上狂欢节,到2016年已举办了六届,旅游部门统计在每届水上狂欢节期间,吸引了不少外地游客到柳州,这将极大地推进柳州的旅游业的发展,现将前五届水上狂欢节期间外地游客到柳州的人数统计表如表:
份(x)2011年2012年2013年2014年2015年
水上狂欢节届编号x12345
外地游客人数y(单位:十万)0.60.80.91.21.5
(1)求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)旅游部门统计在每届水上狂欢节期间,每位外地游客可为本市增加100元左右的旅游收入,利用(1)中的线性回归方程,预测2017年第7届柳州国际水上狂欢节期间外地游客可为本市增加的旅游收入达多少?
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=Asin(ωx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象两相邻对称中心的距离为$\frac{π}{2}$,且f(x)≤$f(\frac{π}{6})$=1(x∈R).
(1)求函数f(x)的解析式;
(2)当x∈$[0,\frac{π}{2}]$时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合A={1,2,3},B={1,3,9},其中x∈A且x∉B,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的图象经过三点(0,1),$(\frac{5π}{12},0)$,$(\frac{11π}{12},0)$,且在区间$(\frac{5π}{12},\frac{11π}{12})$内有唯一的最值,且为最小值.
(1)求函数f(x)=Asin(ωx+φ)的解析式;
(2)若函数f(x)在区间[-m,m]上是单调递增函数,求实数m的最大值;
(3)若关于x的方程f(x)-a+1=0在区间$(0,\frac{π}{2})$内有两个实数根x1,x2(x1<x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在一个锐二面角的一个面内有一点,它到棱的距离等于到另一个平面的距离的2倍,则二面角大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案