精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=Asin(ωx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象两相邻对称中心的距离为$\frac{π}{2}$,且f(x)≤$f(\frac{π}{6})$=1(x∈R).
(1)求函数f(x)的解析式;
(2)当x∈$[0,\frac{π}{2}]$时,求f(x)的取值范围.

分析 (1)由函数的最大值求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式.
(2)利用正弦函数的定义域和值域,求得f(x)的取值范围.

解答 解:(1)∵函数f(x)=Asin(ωx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象两相邻对称中心的距离为$\frac{π}{2}$,
∴$\frac{1}{2}$•$\frac{2π}{ω}$=$\frac{π}{2}$,∴ω=2.
∴f(x)≤$f(\frac{π}{6})$=1(x∈R ),∴A-1=1,2•$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,∴φ=2kπ+$\frac{π}{6}$,k∈Z,取φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$)-1.
(2)当x∈$[0,\frac{π}{2}]$时,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴f(x)∈[-2,1].

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最大值求出A,由周期求出ω,由特殊点的坐标求出φ的值,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知f(x)=cosxsinx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(1)求f(x)的单调增区间;
(2)在△ABC中,A为锐角且f(A)=$\frac{\sqrt{3}}{2}$,D为BC中点,AD=3,AB=$\sqrt{3}$,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知平面ABC⊥平面BCDE,△DEF与△ABC分别是棱长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,DE∥BC,BC⊥CD,CD=1,点G为△ABC的重心,N为AB中点,$\overrightarrow{AM}$=λ$\overrightarrow{AF}$(λ∈r,λ>0),
(Ⅰ)当λ=$\frac{2}{3}$时,求证:GM∥平面DFN
(Ⅱ)若直线MN与CD所成角为$\frac{π}{3}$,试求二面角M-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,运行流程图,则输出的n的值等于(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中,真命题是(  )
A.?x∈R,x2≥x
B.命题“若x=1,则x2=1”的逆命题
C.0,β0∈R,使得sin(α00)=sinα0+sinβ0
D.命题“若x≠y,则sinx≠siny”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}满足a1=1,an+1=$\sqrt{\frac{{{a_n}^2}}{{4{a_n}^2+1}}}$(n∈N+),
(1)证明$\left\{{\frac{1}{{{a_n}^2}}}\right\}$为等差数列并求an
(2)设Sn=a12+a22+…+an2,bn=S2n+1-Sn,是否存在最小的正整数m,使对任意n∈N+,有bn<$\frac{m}{25}$成立?设若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M是线段PB的中点.有以下四个命题:
①MO∥平面PAC;
②PA∥平面MOB;
③OC⊥平面PAC;
④平面PAC⊥平面PBC.
其中正确的命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(ωx+$\frac{π}{8}$)(x∈R,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象(  )
A.向左平移$\frac{3π}{4}$个单位长度B.向右平移$\frac{3π}{4}$个单位长度
C.向左平移$\frac{3π}{16}$个单位长度D.向右平移$\frac{3π}{16}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex,g(x)=$\frac{n}{2}x+m$,其中e为自然对数的底数,m,n∈R.
(1)若n=2时方程f(x)=g(x)在[-1,1]上恰有两个相异实根,求m的取值范围;
(2)若T(x)=f(x)•g(x),且m=1-$\frac{n}{2}$,求T(x)在[-1,1]上的最大值;
(3)若m=-$\frac{15}{2}$,求使f(x)>g(x)对?x∈R都成立的最大正整数n.

查看答案和解析>>

同步练习册答案