精英家教网 > 高中数学 > 题目详情
2.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M是线段PB的中点.有以下四个命题:
①MO∥平面PAC;
②PA∥平面MOB;
③OC⊥平面PAC;
④平面PAC⊥平面PBC.
其中正确的命题的序号是①④.

分析 ①先证明MO∥PA,即可判定MO∥平面PAC;
②PA在平面MOB内,可得①错误;
③可证PA⊥BC,BC⊥平面PAC.即可证明OC⊥平面PAC不成立;
④由③知BC⊥平面PAC,即可证明平面PAC⊥平面PBC.

解答 解:①因为MO∥PA,MO?平面PAC,PA?平面PAC,所以MO∥平面PAC;
②因为PA在平面MOB内,所以①错误;
③因为PA垂直于圆O所在的平面,所以PA⊥BC.
又BC⊥AC,AC∩PA=A,所以BC⊥平面PAC.因为空间内过一点作已知平面的垂线有且只有一条,所以OC⊥平面PAC不成立,③错误;
④由③知BC⊥平面PAC,且BC?平面PBC,所以平面PAC⊥平面PBC.
正确命题的序号是①④.
故答案为:①④.

点评 本题主要考查了直线与平面平行的判定,直线与平面垂直的性质,考查了空间想象能力和推理论证能力,考查了数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设函数y=f(x+1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x-1)f(x)≤0的解集为(-∞,0]∪[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}的前n项和为Sn,公差为2,且a1,S2,S4成等比数列,则数列{an}的通项公式an等于(  )
A.2n+1B.2n-3C.2n-1D.2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=Asin(ωx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象两相邻对称中心的距离为$\frac{π}{2}$,且f(x)≤$f(\frac{π}{6})$=1(x∈R).
(1)求函数f(x)的解析式;
(2)当x∈$[0,\frac{π}{2}]$时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合A={1,2,3},B={1,3,9},其中x∈A且x∉B,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=-x3+ax2-x-1在R上不是单调函数,则实数a的取值范围是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的图象经过三点(0,1),$(\frac{5π}{12},0)$,$(\frac{11π}{12},0)$,且在区间$(\frac{5π}{12},\frac{11π}{12})$内有唯一的最值,且为最小值.
(1)求函数f(x)=Asin(ωx+φ)的解析式;
(2)若函数f(x)在区间[-m,m]上是单调递增函数,求实数m的最大值;
(3)若关于x的方程f(x)-a+1=0在区间$(0,\frac{π}{2})$内有两个实数根x1,x2(x1<x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ln({x}^{2}-2x+a)}{x-1}$.
(1)当a=1时,讨论f(x)在(1,+∞)上的单调性;
(2)若f(x)的定义域为(-∞,1)∪(1,+∞).
①求实数a的取值范围;
②若关于x的不等式f(x)<(x-1)•ex对任意的x∈(1,+∞)都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若直线y=kx+2与曲线y=$\sqrt{1-{x^2}}$有两个公共点,则k的取值范围是$[{-2,-\sqrt{3}})∪({\sqrt{3},2}]$.

查看答案和解析>>

同步练习册答案