精英家教网 > 高中数学 > 题目详情
3.若直线y=kx+2与曲线y=$\sqrt{1-{x^2}}$有两个公共点,则k的取值范围是$[{-2,-\sqrt{3}})∪({\sqrt{3},2}]$.

分析 作出直线y=kx+2与曲线y=$\sqrt{1-{x^2}}$的图象,利用数形结合进行求解即可

解答 解:由y=$\sqrt{1-{x^2}}$得x2+y2=1,(y≥0),对应的轨迹为上半圆,
∵直线y=kx+2过定点A(0,2),

∴当k=±$\sqrt{3}$时,直线y=kx+2与圆x2+y2=1相切,
由图象可知当直线y=kx+2经过点B(-1,0)或C(1,0)时,直线和圆有两个交点,
此时k=±2,
则若直线y=kx+1与曲线y=$\sqrt{1-{x^2}}$恰有两个共同点,
故k∈$[{-2,-\sqrt{3}})∪({\sqrt{3},2}]$
故答案为:$[{-2,-\sqrt{3}})∪({\sqrt{3},2}]$

点评 本题主要考查直线和圆的位置关系的应用,利用数形结合是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M是线段PB的中点.有以下四个命题:
①MO∥平面PAC;
②PA∥平面MOB;
③OC⊥平面PAC;
④平面PAC⊥平面PBC.
其中正确的命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若△ABC是边长为1的等边三角形,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,2$\overrightarrow{AE}$=$\overrightarrow{EC}$,则$\overrightarrow{CD}$$•\overrightarrow{BE}$=(  )
A.-$\frac{1}{9}$B.-$\frac{2}{9}$C.-$\frac{1}{3}$D.-$\frac{7}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex,g(x)=$\frac{n}{2}x+m$,其中e为自然对数的底数,m,n∈R.
(1)若n=2时方程f(x)=g(x)在[-1,1]上恰有两个相异实根,求m的取值范围;
(2)若T(x)=f(x)•g(x),且m=1-$\frac{n}{2}$,求T(x)在[-1,1]上的最大值;
(3)若m=-$\frac{15}{2}$,求使f(x)>g(x)对?x∈R都成立的最大正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则$|{\begin{array}{l}{sin{{50}°}}&{cos{{40}°}}\\{-\sqrt{3}tan{{10}°}}&1\end{array}}|$=(  )
A.2sin10°B.-1C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=sinx+3|sinx|+b(x∈[0,2π])恰有三个不同的零点,则b=-2或0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线ax+by=1与圆C:x2+y2=1相切,则点P(a,b)与圆C的位置关系在圆上(填“在圆上”、“在圆外”或“在圆内”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12..已知数列{an},{bn}满足:an+bn=1,bn+1=$\frac{b_n}{{(1-{a_n})(1+{a_n})}}$,且a1,b1是函数f(x)=16x2-16x+3的零点(a1<b1).
(1)求a1,b1,b2
(2)设cn=$\frac{1}{{{b_n}-1}}$,求证:数列{cn}是等差数列,并求bn的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,不等式4aSn<bn恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.椭圆C;$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是F1,F2,右顶点为A,上顶点为B,坐标系原点O到直线AB的距离为$\frac{{2\sqrt{21}}}{7}$,椭圆的离心率是$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若经过点N(0,t)的直线l与椭圆C交于不同的两点P,Q,且$\overrightarrow{PN}$=3$\overline{NQ}$,求△AON(点o为坐标系原点)周长的取值范围.

查看答案和解析>>

同步练习册答案