精英家教网 > 高中数学 > 题目详情
13.椭圆C;$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是F1,F2,右顶点为A,上顶点为B,坐标系原点O到直线AB的距离为$\frac{{2\sqrt{21}}}{7}$,椭圆的离心率是$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若经过点N(0,t)的直线l与椭圆C交于不同的两点P,Q,且$\overrightarrow{PN}$=3$\overline{NQ}$,求△AON(点o为坐标系原点)周长的取值范围.

分析 (Ⅰ)椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$,整理得:3a2=4b2,由三角形OAB的面积公式可知:$\frac{1}{2}ab=\frac{1}{2}×\frac{{2\sqrt{21}}}{7}\sqrt{{a^2}+{b^2}}$,代入即可求得a和b的值,即可求得椭圆方程;
(Ⅱ)当直线l斜率不存在时,求得t=±$\frac{\sqrt{3}}{2}$,?当直线l斜率存在时,设直线l的方程为y=kx+t,代入椭圆方程,$\overrightarrow{PN}=3\overline{NQ}$,则x1=-3x2,代入上式可得${x_1}=\frac{-12kt}{{4{k^2}+3}}$,${x_2}=\frac{4kt}{{4{k^2}+3}}$,
求得:${k^2}=\frac{{9-3{t^2}}}{{16{t^2}-12}}$,则$\frac{{{t^2}({3-{t^2}})}}{{4{t^2}-3}}>0$,即可求得t的取值范围,由△AON的周长$l=2+|t|+\sqrt{{t^2}+4}$,$t∈({-\sqrt{3}}\right.,\left.{-\frac{{\sqrt{3}}}{2}}]∪[{\frac{{\sqrt{3}}}{2}}\right.,\left.{\sqrt{3}})$是偶函数,由t的取值范围,即可求得△AON周长的取值范围.

解答 解:(Ⅰ)由椭圆C;$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)焦点在x轴上,
∵椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$,整理得:3a2=4b2,…(1分)
又∵坐标系原点O到直线AB的距离为$\frac{{2\sqrt{21}}}{7}$.
由三角形OAB的面积公式可知:$\frac{1}{2}ab=\frac{1}{2}×\frac{{2\sqrt{21}}}{7}\sqrt{{a^2}+{b^2}}$,…(2分)
∴$\frac{{\sqrt{3}}}{2}{a^2}=\frac{{2\sqrt{21}}}{7}\sqrt{{a^2}+\frac{3}{4}{a^2}}$,a=2,$b=\sqrt{3}$,
椭圆C的方程为:$\frac{x^2}{4}+\frac{y^2}{3}=1$;…(4分)
(Ⅱ)?当直线l斜率不存在时,
∵经过点N(0,t)的直线l与椭圆C交于不同的两点P,Q,且,$\overrightarrow{PN}=3\overline{NQ}$.
∴$点N为椭圆短轴的四等分点,t=±\frac{{\sqrt{3}}}{2}$,…(5分)
?当直线l斜率存在时,设直线l的方程为y=kx+t,
又设直线l与椭圆C的交点P(x1,y1),Q(x2,y2).
∴$由\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=kx+t\end{array}\right.得(4{k^2}+3){x^2}+8ktx+4{t^2}-12=0$,
∴△>0,即4k2-t2+3>0,(*)
${x_1}+{x_2}=-\frac{8kt}{{4{k^2}+3}}$,${x_1}{x_2}=\frac{{4{t^2}-12}}{{4{k^2}+3}}$…(7分)
又∵$\overrightarrow{PN}=3\overline{NQ}$,
∴x1=-3x2,代入上式可得${x_1}=\frac{-12kt}{{4{k^2}+3}}$,${x_2}=\frac{4kt}{{4{k^2}+3}}$$\frac{-12kt}{{4{k^2}+3}}•\frac{4kt}{{4{k^2}+3}}=\frac{{4{t^2}-12}}{{4{k^2}+3}}$,
化简得:16k2t2+3t2-12k2-9=0,
∴${k^2}=\frac{{9-3{t^2}}}{{16{t^2}-12}}$带入(*)得$\frac{{{t^2}({3-{t^2}})}}{{4{t^2}-3}}>0$,
即又t≠0,
∴(3-t2)(4t2-3)>0
解得;$-\sqrt{3}<t<-\frac{{\sqrt{3}}}{2}或\frac{{\sqrt{3}}}{2}<t<\sqrt{3}$,…(9分)
综上所述实数t的取值范围为:$({-\sqrt{3}}\right.,\left.{-\frac{{\sqrt{3}}}{2}}]∪[{\frac{{\sqrt{3}}}{2}}\right.,\left.{\sqrt{3}})$,…(10分)
又△AON的周长$l=2+|t|+\sqrt{{t^2}+4}$,$t∈({-\sqrt{3}}\right.,\left.{-\frac{{\sqrt{3}}}{2}}]∪[{\frac{{\sqrt{3}}}{2}}\right.,\left.{\sqrt{3}})$是偶函数.
∴当$t∈[{\frac{{\sqrt{3}}}{2}}\right.,\left.{\sqrt{3}})$时,$l=2+t+\sqrt{{t^2}+4}$在$[{\frac{{\sqrt{3}}}{2}}\right.,\left.{\sqrt{3}})$上单调递增,
∴$l∈[{2+\frac{{\sqrt{3}}}{2}}\right.+\frac{{\sqrt{19}}}{2},\left.{2+\sqrt{3}+\sqrt{7}})$,
∴△AON周长的取值范围为[2+$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{19}}{2}$,2+$\sqrt{3}$+$\sqrt{7}$).…(12分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理及函数单调性的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若直线y=kx+2与曲线y=$\sqrt{1-{x^2}}$有两个公共点,则k的取值范围是$[{-2,-\sqrt{3}})∪({\sqrt{3},2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l的参数方程是$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为p=2cosθ+4sinθ,则直线l被圆C所截得的弦长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a,b的值;
(2)求f(x)在区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.与⊙C1:x2+(y+2)2=25内切且与⊙C2:x2+(y-2)2=1外切的动圆圆心M的轨迹方程是(  )
A.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(y≠0)B.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(x≠0)C.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(x≠3)D.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=lnx-a2x2+ax(a∈R)在区间(1,+∞)上是减函数,则实数a的取值范围是(-∞,-$\frac{1}{2}$]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线l交抛物线y2=3x于A、B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(O是坐标原点),设l交x轴于点F,F′、F分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点.若双曲线的右支上存在一点P,使得|$\overrightarrow{PF′}$|=2|$\overrightarrow{PF}$|,则a的取值范围是[1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将边长为2的正方形ABCD沿对角线BD折起,则三棱锥C-ABD的外接球表面积为(  )
A.B.12πC.16πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若线性回归方程为y=2-3.5x,则变量x增加一个单位,变量y平均(  )
A.减少3.5个单位B.增加2个单位C.增加3.5个单位D.减少2个单位

查看答案和解析>>

同步练习册答案