·ÖÎö £¨1£©ÓÉ16x2-16x+3=0½âµÃ£º${x_1}=\frac{1}{4}£¬{x_2}=\frac{3}{4}$£¬¿ÉµÃa1£¬b1£®ÓÉ${a_n}+{b_n}=1£¬{b_{n+1}}=\frac{b_n}{{£¨1-{a_n}£©£¨1+{a_n}£©}}$£¬µÃ${b_{n+1}}=\frac{b_n}{{{b_n}£¨2-{b_n}£©}}=\frac{1}{{2-{b_n}}}$£¬¿ÉµÃb2£®
£¨2£©ÓÉ${b_{n+1}}-1=\frac{1}{{2-{b_n}}}-1$£¬¿ÉµÃ$\frac{1}{{{b_{n+1}}-1}}=\frac{{2-{b_n}}}{{{b_n}-1}}=\frac{1}{{{b_n}-1}}-1$£®¼´cn+1=cn-1£¬ÀûÓõȲîÊýÁеÄͨÏʽ¿ÉµÃcn£¬bn£®
£¨3£©ÀûÓá°ÁÑÏîÇóºÍ¡±·½·¨¿ÉµÃSn£¬¶Ôa·ÖÀàÌÖÂÛ£¬Í¨¹ýת»¯ÀûÓõ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉ16x2-16x+3=0½âµÃ£º${x_1}=\frac{1}{4}£¬{x_2}=\frac{3}{4}$£¬
¡à${a_1}=\frac{1}{4}£¬{b_1}=\frac{3}{4}$£®
ÓÉ${a_n}+{b_n}=1£¬{b_{n+1}}=\frac{b_n}{{£¨1-{a_n}£©£¨1+{a_n}£©}}$£¬µÃ${b_{n+1}}=\frac{b_n}{{{b_n}£¨2-{b_n}£©}}=\frac{1}{{2-{b_n}}}$£¬
½«${b_1}=\frac{3}{4}$´úÈëµÃ${b_2}=\frac{4}{5}$£®
£¨2£©¡ß${b_{n+1}}-1=\frac{1}{{2-{b_n}}}-1$£¬¡à$\frac{1}{{{b_{n+1}}-1}}=\frac{{2-{b_n}}}{{{b_n}-1}}=\frac{1}{{{b_n}-1}}-1$£®
¼´cn+1=cn-1£¬
ÓÖ${c_1}=\frac{1}{{{b_1}-1}}=\frac{1}{{\frac{3}{4}-1}}=-4$£®
¹Ê£ºÊýÁÐ{cn}ÊÇÒÔ-4ΪÊ×Ï-1Ϊ¹«²îµÄµÈ²îÊýÁУ®
ÓÚÊÇcn=-4+£¨n-1£©¡Á£¨-1£©=-n-3£¬
ÓÉ${c_n}=\frac{1}{{{b_n}-1}}$µÃ${b_n}=\frac{1}{c_n}+1=1-\frac{1}{n+3}=\frac{n+2}{n+3}$£®
£¨3£©²»ÓÉÌâÒâ¼°£¨2£©Öª£º${a_n}=1-{b_n}=\frac{1}{n+3}$£®
$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨n+3£©£¨n+4£©}$=$\frac{1}{n+3}-\frac{1}{n+4}$£®
¡àSn=a1a2+a2a3+a3a4+¡+anan+1
=$£¨\frac{1}{4}-\frac{1}{5}£©+£¨\frac{1}{5}-\frac{1}{6}£©$+¡+$£¨\frac{1}{n+3}-\frac{1}{n+4}£©$
=$\frac{1}{4}-\frac{1}{n+4}$
=$\frac{n}{4£¨n+4£©}$£®
ÓÉ$4a{S_n}-{b_n}=\frac{an}{n+4}-\frac{n+2}{n+3}=\frac{{£¨a-1£©{n^2}+£¨3a-6£©n-8}}{£¨n+3£©£¨n+4£©}£¼0$ºã³ÉÁ¢£¬
¼´£¨a-1£©n2+£¨3a-6£©n-8£¼0ºã³ÉÁ¢¼´¿É£¬£©
Éèf£¨n£©=£¨a-1£©n2+£¨3a-6£©n-8
¢Ùµ±a=1ʱ£¬f£¨n£©=-3n-8£¼0ºã³ÉÁ¢
¢Úµ±a£¾1ʱ£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊf£¨n£©=£¨a-1£©n2+£¨3a-6£©n-8£¼0²»¿ÉÄܺã³ÉÁ¢£®
¢Ûµ±a£¼1ʱ£¬ÓÉÓÚ$-\frac{3a-6}{2£¨a-1£©}=-\frac{3}{2}£¨1-\frac{1}{a-1}£©£¼0$£¬
¡àf£¨n£©=£¨a-1£©n2+£¨3a-6£©n-8ÔÚ[1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬
ÓÉf£¨1£©=£¨a-1£©n2+£¨3a-6£©n-8=4a-15£¼0µÃ$a£¼\frac{15}{4}$£¬
¡àa£¼1£¬4aSn£¼bnºã³ÉÁ¢£®
×ÛÉÏËùÊö£ºËùÇóaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬1]£®
µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢¡°ÁÑÏîÇóºÍ¡±·½·¨¡¢ÊýÁеÝÍÆ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨2016£©£¾e2016f£¨0£© | B£® | f£¨2016£©£¼e2016f£¨0£© | ||
| C£® | f£¨2016£©=e2016f£¨0£© | D£® | f£¨2016£©Óëe2016f£¨0£©´óСÎÞ·¨È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | 1 | C£® | Ëæa±ä»¯ | D£® | Ëæ¦È±ä»¯ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8¦Ð | B£® | 12¦Ð | C£® | 16¦Ð | D£® | 4¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com