12£®.ÒÑÖªÊýÁÐ{an}£¬{bn}Âú×㣺an+bn=1£¬bn+1=$\frac{b_n}{{£¨1-{a_n}£©£¨1+{a_n}£©}}$£¬ÇÒa1£¬b1ÊǺ¯Êýf£¨x£©=16x2-16x+3µÄÁãµã£¨a1£¼b1£©£®
£¨1£©Çóa1£¬b1£¬b2£»
£¨2£©Éècn=$\frac{1}{{{b_n}-1}}$£¬ÇóÖ¤£ºÊýÁÐ{cn}ÊǵȲîÊýÁУ¬²¢ÇóbnµÄͨÏʽ£»
£¨3£©ÉèSn=a1a2+a2a3+a3a4+¡­+anan+1£¬²»µÈʽ4aSn£¼bnºã³ÉÁ¢Ê±£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉ16x2-16x+3=0½âµÃ£º${x_1}=\frac{1}{4}£¬{x_2}=\frac{3}{4}$£¬¿ÉµÃa1£¬b1£®ÓÉ${a_n}+{b_n}=1£¬{b_{n+1}}=\frac{b_n}{{£¨1-{a_n}£©£¨1+{a_n}£©}}$£¬µÃ${b_{n+1}}=\frac{b_n}{{{b_n}£¨2-{b_n}£©}}=\frac{1}{{2-{b_n}}}$£¬¿ÉµÃb2£®
£¨2£©ÓÉ${b_{n+1}}-1=\frac{1}{{2-{b_n}}}-1$£¬¿ÉµÃ$\frac{1}{{{b_{n+1}}-1}}=\frac{{2-{b_n}}}{{{b_n}-1}}=\frac{1}{{{b_n}-1}}-1$£®¼´cn+1=cn-1£¬ÀûÓõȲîÊýÁеÄͨÏʽ¿ÉµÃcn£¬bn£®
£¨3£©ÀûÓá°ÁÑÏîÇóºÍ¡±·½·¨¿ÉµÃSn£¬¶Ôa·ÖÀàÌÖÂÛ£¬Í¨¹ýת»¯ÀûÓõ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉ16x2-16x+3=0½âµÃ£º${x_1}=\frac{1}{4}£¬{x_2}=\frac{3}{4}$£¬
¡à${a_1}=\frac{1}{4}£¬{b_1}=\frac{3}{4}$£®
ÓÉ${a_n}+{b_n}=1£¬{b_{n+1}}=\frac{b_n}{{£¨1-{a_n}£©£¨1+{a_n}£©}}$£¬µÃ${b_{n+1}}=\frac{b_n}{{{b_n}£¨2-{b_n}£©}}=\frac{1}{{2-{b_n}}}$£¬
½«${b_1}=\frac{3}{4}$´úÈëµÃ${b_2}=\frac{4}{5}$£®
£¨2£©¡ß${b_{n+1}}-1=\frac{1}{{2-{b_n}}}-1$£¬¡à$\frac{1}{{{b_{n+1}}-1}}=\frac{{2-{b_n}}}{{{b_n}-1}}=\frac{1}{{{b_n}-1}}-1$£®
¼´cn+1=cn-1£¬
ÓÖ${c_1}=\frac{1}{{{b_1}-1}}=\frac{1}{{\frac{3}{4}-1}}=-4$£®
¹Ê£ºÊýÁÐ{cn}ÊÇÒÔ-4ΪÊ×Ï-1Ϊ¹«²îµÄµÈ²îÊýÁУ® 
ÓÚÊÇcn=-4+£¨n-1£©¡Á£¨-1£©=-n-3£¬
ÓÉ${c_n}=\frac{1}{{{b_n}-1}}$µÃ${b_n}=\frac{1}{c_n}+1=1-\frac{1}{n+3}=\frac{n+2}{n+3}$£®
£¨3£©²»ÓÉÌâÒâ¼°£¨2£©Öª£º${a_n}=1-{b_n}=\frac{1}{n+3}$£®
$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨n+3£©£¨n+4£©}$=$\frac{1}{n+3}-\frac{1}{n+4}$£®
¡àSn=a1a2+a2a3+a3a4+¡­+anan+1
=$£¨\frac{1}{4}-\frac{1}{5}£©+£¨\frac{1}{5}-\frac{1}{6}£©$+¡­+$£¨\frac{1}{n+3}-\frac{1}{n+4}£©$
=$\frac{1}{4}-\frac{1}{n+4}$
=$\frac{n}{4£¨n+4£©}$£®
ÓÉ$4a{S_n}-{b_n}=\frac{an}{n+4}-\frac{n+2}{n+3}=\frac{{£¨a-1£©{n^2}+£¨3a-6£©n-8}}{£¨n+3£©£¨n+4£©}£¼0$ºã³ÉÁ¢£¬
¼´£¨a-1£©n2+£¨3a-6£©n-8£¼0ºã³ÉÁ¢¼´¿É£¬£©
Éèf£¨n£©=£¨a-1£©n2+£¨3a-6£©n-8
¢Ùµ±a=1ʱ£¬f£¨n£©=-3n-8£¼0ºã³ÉÁ¢
¢Úµ±a£¾1ʱ£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊf£¨n£©=£¨a-1£©n2+£¨3a-6£©n-8£¼0²»¿ÉÄܺã³ÉÁ¢£®
¢Ûµ±a£¼1ʱ£¬ÓÉÓÚ$-\frac{3a-6}{2£¨a-1£©}=-\frac{3}{2}£¨1-\frac{1}{a-1}£©£¼0$£¬
¡àf£¨n£©=£¨a-1£©n2+£¨3a-6£©n-8ÔÚ[1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬
ÓÉf£¨1£©=£¨a-1£©n2+£¨3a-6£©n-8=4a-15£¼0µÃ$a£¼\frac{15}{4}$£¬
¡àa£¼1£¬4aSn£¼bnºã³ÉÁ¢£®
×ÛÉÏËùÊö£ºËùÇóaµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬1]£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢¡°ÁÑÏîÇóºÍ¡±·½·¨¡¢ÊýÁеÝÍÆ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=$\frac{ln£¨{x}^{2}-2x+a£©}{x-1}$£®
£¨1£©µ±a=1ʱ£¬ÌÖÂÛf£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£»
£¨2£©Èôf£¨x£©µÄ¶¨ÒåÓòΪ£¨-¡Þ£¬1£©¡È£¨1£¬+¡Þ£©£®
¢ÙÇóʵÊýaµÄȡֵ·¶Î§£»
¢ÚÈô¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼£¨x-1£©•ex¶ÔÈÎÒâµÄx¡Ê£¨1£¬+¡Þ£©¶¼³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈôÖ±Ïßy=kx+2ÓëÇúÏßy=$\sqrt{1-{x^2}}$ÓÐÁ½¸ö¹«¹²µã£¬ÔòkµÄȡֵ·¶Î§ÊÇ$[{-2£¬-\sqrt{3}}£©¡È£¨{\sqrt{3}£¬2}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªf£¨x£©ÎªRÉϵĿɵ¼º¯Êý£¬ÇÒ?x¡ÊR£¬¾ùÓÐf£¨x£©£¾f¡ä£¨x£©£¬ÔòÒÔÏÂÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨2016£©£¾e2016f£¨0£©B£®f£¨2016£©£¼e2016f£¨0£©
C£®f£¨2016£©=e2016f£¨0£©D£®f£¨2016£©Óëe2016f£¨0£©´óСÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ö±Ïßxcos¦È+ysin¦È+a=0ÓëÔ²x2+y2=a2½»µãµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®Ëæa±ä»¯D£®Ëæ¦È±ä»¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÉèAΪԲ£¨x-2£©2+£¨y-2£©2=2ÉÏÒ»¶¯µã£¬ÔòAµ½Ö±Ïßx-y-4=0µÄ×î´ó¾àÀëΪ$3\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪp=2cos¦È+4sin¦È£¬ÔòÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤Îª£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®É躯Êýf£¨x£©=2x3+3ax2+3bx+8cÔÚx=1¼°x=2ʱȡµÃ¼«Öµ£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[0£¬3]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®½«±ß³¤Îª2µÄÕý·½ÐÎABCDÑØ¶Ô½ÇÏßBDÕÛÆð£¬ÔòÈýÀâ×¶C-ABDµÄÍâ½ÓÇò±íÃæ»ýΪ£¨¡¡¡¡£©
A£®8¦ÐB£®12¦ÐC£®16¦ÐD£®4¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸