精英家教网 > 高中数学 > 题目详情
17.设A为圆(x-2)2+(y-2)2=2上一动点,则A到直线x-y-4=0的最大距离为$3\sqrt{2}$.

分析 求出圆心和半径.再求出圆心到直线的距离,把此距离加上半径,即为所求.

解答 解:(x-2)2+(y-2)2=2的圆心坐标为(2,2),半径为$\sqrt{2}$,
(2,2)到直线的距离d=$\frac{|2-2-4|}{\sqrt{2}}$=2$\sqrt{2}$,
∴圆(x-2)2+(y-2)2=2上的点到直线x-y-4=0的最大距离是$3\sqrt{2}$;
故答案为$3\sqrt{2}$.

点评 本题考查直线和圆的位置关系,点到直线的距离公式等知识的综合应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知动圆P与圆F1:(x+2)2+y2=(2$\sqrt{7}$+3)2 相内切,且与圆F2:(x-2)2+y2=9相内切,记圆心P的轨迹为曲线C;设M为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OM的平行线交曲线C于A,B两个不同的点.
(1)求曲线C的方程;
(2)是否存在常数λ,使得$\frac{|AB|}{|OM{|}^{2}}$=λ,若能,求出这个常数λ.若不能,说明理由;
(3)记△MF2A面积为S1,△OF2B面积为S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=sinx+3|sinx|+b(x∈[0,2π])恰有三个不同的零点,则b=-2或0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx.
(1)若f(x)≤ax在x>0时恒成立,求实数a的取值范围;
(2)证明:$\frac{x}{1+x}$≤f(x+1)在x>-1时恒成立;
(3)设n∈N*,证明:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n+1}$<ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12..已知数列{an},{bn}满足:an+bn=1,bn+1=$\frac{b_n}{{(1-{a_n})(1+{a_n})}}$,且a1,b1是函数f(x)=16x2-16x+3的零点(a1<b1).
(1)求a1,b1,b2
(2)设cn=$\frac{1}{{{b_n}-1}}$,求证:数列{cn}是等差数列,并求bn的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,不等式4aSn<bn恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.根据下列条件,求直线方程(结果写成一般式)
(1)直线l过点(-1,2),且在x,y轴上的截距相等;
(2)直线m过点(2,1),并且到A(1,1)、B(3,5)两点的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=2-|x|+c有零点,则实数c的取值范围是(  )
A.(0,1]B.[0,1]C.[-1,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\frac{A}{2}$-$\frac{A}{2}$cos2(ωx+φ),(A>0,ω>0,0<φ<$\frac{π}{2})$的图象过点(1,2),相邻两条对称轴间的距离为2,且f(x)的最大值为2.则f(1)+f(2)+…+f(2016)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)-ex]=e+1(e是自然对数的底数),则方程f(x)-x-2=0的解的个数为(  )个.
A.1B.0C.3D.2

查看答案和解析>>

同步练习册答案