精英家教网 > 高中数学 > 题目详情
6.若数列{an}满足$({2n+3}){a_{n+1}}-({2n+5}){a_n}=({2n+3})({2n+5})lg({1+\frac{1}{n}})$,且a1=5,则数列$\left\{{\frac{a_n}{2n+3}}\right\}$的第100项为(  )
A.2B.3C.1+lg99D.2+lg99

分析 将已知等式两边同除以(2n+3)(2n+5)化简得到递推公式,设${b}_{n}=\frac{{a}_{n}}{2n+3}$,利用累加法和递推公式求出bn,将n=100代入求出b100,即可得到答案.

解答 解:因为$(2n+3){a}_{n+1}-(2n+5){a}_{n}=(2n+3)(2n+5)lg(1+\frac{1}{n})$,
所以两边同除以(2n+3)(2n+5)得,
$\frac{{a}_{n+1}}{2n+5}$-$\frac{{a}_{n}}{2n+3}$=$lg(1+\frac{1}{n})$=lg(n+1)-lgn,
设${b}_{n}=\frac{{a}_{n}}{2n+3}$,则${b}_{n+1}-{b}_{n}=\frac{{a}_{n+1}}{2n+5}-\frac{{a}_{n}}{2n+3}$=lg(n+1)-lgn,
由a1=5得,${b}_{1}=\frac{{a}_{1}}{2+3}$=1,
所以当n≥2时,
b2-b1=lg2-lg1,b3-b2=lg3-lg2,…,bn-bn-1=lgn-lg(n-1),
以上n-1个式子相加得,bn-b1=lgn-lg1,
则bn=b1+lgn=lgn+1,
所以b100=lg100+1=3,即数列$\{\frac{{a}_{n}}{2n+3}\}$的第100项是3,
故选B.

点评 本题考查了数列递推公式的化简以及应用,累加法求数列的通项公式,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知在三角形ABC中,AB=AC,BC=4,∠BAC=120°,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若P是BC边上的动点,则$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范围是(  )
A.[-1,3]B.$[{-\frac{2}{3},3}]$C.$[{-\frac{2}{3},\frac{10}{3}}]$D.$[{-1,\frac{10}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合A={1,2,3},B={1,3,9},其中x∈A且x∉B,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的图象经过三点(0,1),$(\frac{5π}{12},0)$,$(\frac{11π}{12},0)$,且在区间$(\frac{5π}{12},\frac{11π}{12})$内有唯一的最值,且为最小值.
(1)求函数f(x)=Asin(ωx+φ)的解析式;
(2)若函数f(x)在区间[-m,m]上是单调递增函数,求实数m的最大值;
(3)若关于x的方程f(x)-a+1=0在区间$(0,\frac{π}{2})$内有两个实数根x1,x2(x1<x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足(1-z)(1+2i)=i,则在复平面内表示复数z的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ln({x}^{2}-2x+a)}{x-1}$.
(1)当a=1时,讨论f(x)在(1,+∞)上的单调性;
(2)若f(x)的定义域为(-∞,1)∪(1,+∞).
①求实数a的取值范围;
②若关于x的不等式f(x)<(x-1)•ex对任意的x∈(1,+∞)都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足{x≥0y≥04x+3y≤12,则z=y+12x-2的取值范围是(  )
A.[-12,14]B.[-52,14]C.(-∞,-12]∪[14,+∞)D.(-∞,-52]∪[14,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在一个锐二面角的一个面内有一点,它到棱的距离等于到另一个平面的距离的2倍,则二面角大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线xcosθ+ysinθ+a=0与圆x2+y2=a2交点的个数是(  )
A.0B.1C.随a变化D.随θ变化

查看答案和解析>>

同步练习册答案