精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 已知a∈R,求函数f(x)=x2eax的单调区间.

解:f′(x)=2xeax+ax2eax=(2x+ax2)eax.
①当a=0时,若x<0,则f′(x)<0,若x>0,则f′(x)>0.
所以,当a=0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. ……4分
②当a>0时,由2x+ax2>0,解得x<-或x>0;由2x+ax2<0,得-<x<0.
所以当a>0时,函数f(x)在区间(-∞,-)内为增函数,在区间(-,0)内为减函数,在区间(0,+∞)内为增函数. …………………………………8分
③当a<0时,由2x+ax2>0,得0<x<-.
由2x+ax2<0,得x<0或x>-.
所以当a<0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,-)内为增函数,在区间(-,+∞)内为减函数. ……………………………12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,其中
(Ⅰ)当时,求的极值点;
(Ⅱ)若为R上的单调函数,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
已知函数.当时,函数取得极值.
(I)求实数的值;
(II)若时,方程有两个根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(13分)
(1)若上的最大值
(2)若在区间[1,2]上为减函数,求a的取值范围。
(3)若直线为函数的图象的一条切线,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数的图像过原点,
的导函数为,且
(1)求函数的解析式;
(2)求的极小值;
(3)是否存在实常数,使得若存在,求的值;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)当时,上恒成立,求实数的取值范围;
(2)当时,若函数上恰有两个不同零点,求实数的取值范围;
(3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知二次函数
为常数).若直线12与函数的图象以及2,y轴与函数的图象
所围成的封闭图形如阴影所示. 
(1)求、b、c的值;
(2)求阴影面积S关于t的函数S(t)的解析式;
(3)若问是否存在实数m,使得的图象与的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)若函数
(1)当时,求函数的单调增区间;
(2)函数是否存在极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极大值; (2)
(3)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的分界线。设,试探究函数是否存在“分界线”?若存在,请给予证明,并求出的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案