精英家教网 > 高中数学 > 题目详情

设二次函数的图像过原点,
的导函数为,且
(1)求函数的解析式;
(2)求的极小值;
(3)是否存在实常数,使得若存在,求的值;若不存在,说明理由

解:(1)由已知得
,从而
,
 ,解得
。……………………4分
(2)
求导数得在(0,1)单调递减,在(1,+)单调递增,从而的极小值为。……………………8分
(3)因  与有一个公共点(1,1),而函数在点(1,1)的切线方程为。下面验证都成立即可。
,得,知恒成立。
,即
求导数得
在(0,1)上单调递增,在上单调递减,所以 的最大值为,所以恒成立。
故存在这样的实常数,且

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1)求函数的单调区间;
(2)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数a的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知a∈R,求函数f(x)=x2eax的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知
(Ⅰ)若上为增函数,求实数a的取值范围;
(Ⅱ)当常数时,设,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.
(1)求a、b的值与函数f(x)的单调区间;
(2)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.若过点可作曲线的切线有三条,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)试问该函数能否在处取到极值?若有可能,求实数的值;否则说明理由;
(2)若该函数在区间上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若是函数的极值点,求实数的值;
(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案