精英家教网 > 高中数学 > 题目详情

(本题满分15分)已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若是单调函数,求实数的取值范围.

解:(Ⅰ) 当时,,
…………………………………………………………..…...2分,
时,,所以的减区间是……………………………..………2分
时,,所以的减区间是……………………………………….2分
(Ⅱ) ,…………..….2分
①若是单调减函数,则上恒成立,不可能,故不可能在是单调减函数;…………………………………………………………………….……2分
②若上是单调增函数,即上恒成立,
所以上恒成立,即上恒成立,
,因为上单调减函数,,……….4分
所以a的取值范围是……………………………………………………………………..1分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 
(1)若函数的图象在处的切线方程为,求的值;
(2)若函数上是增函数,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(13分)
(1)若上的最大值
(2)若在区间[1,2]上为减函数,求a的取值范围。
(3)若直线为函数的图象的一条切线,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数的图像过原点,
的导函数为,且
(1)求函数的解析式;
(2)求的极小值;
(3)是否存在实常数,使得若存在,求的值;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
函数
(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据
(2)当时,若关于的不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)当时,上恒成立,求实数的取值范围;
(2)当时,若函数上恰有两个不同零点,求实数的取值范围;
(3)是否存在实数,使函数f(x)和函数在公共定义域上具有相同的单调区间?若存在,求出的值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知二次函数 (,c为常数且1《c《4)的导函数的图象如图所示:

(1).求的值;
(2)记,求上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,若存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的单调减区间为(0,4).
(1)求k的值;
(2)对任意的t∈[-1,1],关于x的方程2x2+5x+a=f(t)总有实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案