精英家教网 > 高中数学 > 题目详情
长方体ABCD—ABC1D1中,,则点到直线AC的距离是
A.3B.C.D.4
A

 

是点到直线AC的距离
;所以故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

.已知正四面体的高为H,它的内切球半径为R,则R︰H=______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)如图,在四棱锥中,底面是边长为2的正方形,且=,的中点. 求:
(Ⅰ) 异面直线CM与PD所成的角的余弦值;
(Ⅱ)直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)如图,在梯形中,,四边形为矩形,平面平面.
(I)求证:平面
(II)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,正方形所在的平面与平面垂直, 的交点,
,
(I)求证:                      
(II)求直线与平面所成的角的大小;
(III)求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知正三棱柱的各棱长都是4, 的中点,动点在侧棱上,且不与点重合.
(I)当时,求证:
(II)设二面角的大小为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求点E到平面ACD的距离;
(III)求二面角A—CD—B的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体-中,与平面所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线和两个平面β,给出下列四个命题:
①若,则内的任何直线都与平行;
②若α,则内的任何直线都与垂直;
③若β,则β内的任何直线都与平行;
④若β,则β内的任何直线都与垂直.
则其中________是真命题.

查看答案和解析>>

同步练习册答案