精英家教网 > 高中数学 > 题目详情
19.在直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,AA1=2,则异面直线A1B与B1C所成角的余弦值为(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{30}}{6}$D.$\frac{\sqrt{30}}{10}$

分析 如图所示,建立空间直角坐标系.利用向量的夹角公式即可得出.

解答 解:如图所示,
建立空间直角坐标系.
C(0,0,0),B(1,0,0),A1(0,1,2),
B1(1,0,2),
$\overrightarrow{{A}_{1}B}$=(1,-1,-2),$\overrightarrow{C{B}_{1}}$=(1,0,2).
∴$cos<\overrightarrow{{A}_{1}B},\overrightarrow{C{B}_{1}}>$=$\frac{\overrightarrow{{A}_{1}B}•\overrightarrow{C{B}_{1}}}{|\overrightarrow{{A}_{1}B}||\overrightarrow{C{B}_{1}}|}$=$\frac{1-4}{\sqrt{6}×\sqrt{5}}$=-$\frac{\sqrt{30}}{10}$.
∴异面直线A1B与B1C所成角的余弦值为$\frac{\sqrt{30}}{10}$.
故选:D.

点评 本题考查了利用向量的夹角公式求异面直线所成的夹角,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,已知有直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,M、N、Q分别是CC1、BC、AC的中点,点P在线段A1B1上运动.
(1)证明:无论点P怎样运动,总有AM⊥平面PNQ;
(2)是否存在点P,使得平面PMN与平面PNQ所成的锐二面角为45°?若存在,试确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设F1、F2是双曲线${x^2}-\frac{y^2}{9}=1$的左、右焦点,点P在双曲线上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则点P到x轴的距离等于$\frac{9}{10}\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f是有序数对集合M={(x,y)|x∈N*,y∈N*}上的一个映射,正整数数对(x,y)在映射f下对应的为实数z,记作f(x,y)=z.对于任意的正整数m,n(m>n),映射f由下表给出:
(x,y)(n,n)(m,n)(n,m)
f(x,y)nm-nm+n
则使不等式f(2,x)≤3的解集为{1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-1,g(x)=|x-a|.
(1)当a=1时,求F(x)=f(x)-g(x)的零点;
(2)若方程|f(x)|=g(x)有三个不同的实数解,求a的值;
(3)求G(x)=f(x)+g(x)在[-2,2]上的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中的内角为A,B,C,重心为G,若2sinA$\overrightarrow{GA}$+$\sqrt{3}$sinB$\overrightarrow{GB}$+3sinC$\overrightarrow{GC}$=$\overrightarrow{0}$,则cosB=(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>b>c,且a+b+c=0,求证:$\frac{\sqrt{{b}^{2}-ac}}{a}$<$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sinωx(ω>0),若y=f(x)图象过$(\frac{3π}{4},0)$点,且在区间$(-\frac{π}{4},0)$上是增函数,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a>b≥2,现有下列不等式:
①b2<3b-a;②a3+b3>a2b+ab2;③ab>a+b;④$\frac{1}{2}$+$\frac{2}{ab}$>$\frac{1}{a}$+$\frac{1}{b}$.
其中正确的是(  )
A.②④B.①④C.②③D.①③

查看答案和解析>>

同步练习册答案