精英家教网 > 高中数学 > 题目详情
7.已知f是有序数对集合M={(x,y)|x∈N*,y∈N*}上的一个映射,正整数数对(x,y)在映射f下对应的为实数z,记作f(x,y)=z.对于任意的正整数m,n(m>n),映射f由下表给出:
(x,y)(n,n)(m,n)(n,m)
f(x,y)nm-nm+n
则使不等式f(2,x)≤3的解集为{1,2}.

分析 仔细阅读题意得出f(2,x)=$\left\{\begin{array}{l}{2-x,x≤2}\\{2+x,x>2}\end{array}\right.$,转化不等式为$\left\{\begin{array}{l}{x≤2}\\{2-x≤3}\end{array}\right.$或$\left\{\begin{array}{l}{x>2}\\{2+x≤3}\end{array}\right.$求解即可.

解答 解;根据题意得出:f(2,x)=$\left\{\begin{array}{l}{2-x,x≤2}\\{2+x,x>2}\end{array}\right.$
∴不等式f(2,x)≤3可以转化为:$\left\{\begin{array}{l}{x≤2}\\{2-x≤3}\end{array}\right.$或$\left\{\begin{array}{l}{x>2}\\{2+x≤3}\end{array}\right.$
即-1≤x≤2或x∈∅,x∈N*
∴解集为{1,2}
故答案为:{1,2}

点评 本题考查了学生的阅读题意得出需要的函数不等式,考查了分析转化问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的焦距为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,且Sn=n2+2n
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,a=2bcosC,则△ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.生活中常用的十二进位制,如一年有12个月,时针转一周为12个小时,等等,就是逢12进1的计算制,现采用数字0~9和字母A、B共12个计数符号,这些符号与十进制的数的对应关系如下表;
十二进制0123456789AB
十进制01234567891011
例如用十二进位制表示A+B=19,照此算法在十二进位制中运算A×B=92.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)找出一个等比数列{an},使得1,$\sqrt{2}$,4为其中的三项,并指出分别是{an}的第几项;
(2)证明:$\sqrt{2}$为无理数;
(3)证明:1,$\sqrt{2}$,4不可能为同一等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,AA1=2,则异面直线A1B与B1C所成角的余弦值为(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{30}}{6}$D.$\frac{\sqrt{30}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=2$\overrightarrow{e}$1-3$\overrightarrow{e}$2,$\overrightarrow{b}$=(1+n)$\overrightarrow{e}$1+n$\overrightarrow{e}$2,若$\overrightarrow{a}$∥$\overrightarrow{b}$,则n的值为(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知三棱柱ABC---A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分别为CC1,BC的中点,点P为直线A1B1上一点,且满足$\overrightarrow{{A_1}P}=λ\overrightarrow{{A_1}{B_1}}$,
(1)λ=$\frac{1}{2}$时,求直线PN与平面ABC所成角θ的正弦值  
(2)若平面PMN与平面ABC所成锐二面角为450,求λ的值.

查看答案和解析>>

同步练习册答案