精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin2x+2
3
sinxcosx+sin(x+
π
4
)sin(x-
π
4
),x∈R.
(Ⅰ)求f(x)的最小正周期和单调增区间;
(Ⅱ)若x=x0(0≤x0
π
2
)为f(x)的一个零点,求cos2x0的值.
考点:三角函数中的恒等变换应用,复合三角函数的单调性
专题:三角函数的图像与性质
分析:(Ⅰ)利用三角恒等变换可求得f(x)=2sin(2x-
π
6
)+
1
2
,利用正弦函数的周期性与单调性即可求得f(x)的最小正周期和单调增区间;
(Ⅱ)由f(x0)=2sin(2x0-
π
6
)+
1
2
=0,得sin(2x0-
π
6
)=-
1
4
<0,0≤x0
π
2
,可得-
π
6
≤2x0-
π
6
≤0,于是可求得cos(2x0-
π
6
)的值,利用两角和的余弦即可求得答案.
解答: 解:(Ⅰ)f(x)=sin2x+
3
sin2x+
1
2
(sin2x-cos2x)=
1-cos2x
2
+
3
sin2x-
1
2
cos2x,
=
3
sin2x-cos2x+
1
2
=2sin(2x-
π
6
)+
1
2

∴f(x)的周期为π,由-
π
2
+2kπ≤2x-
π
6
π
2
+2kπ得:-
π
6
+kπ≤x≤
π
3
+kπ,k∈Z.
∴f(x)的单调递增区间为[-
π
6
+kπ,
π
3
+kπ]k∈Z.
(Ⅱ)由f(x0)=2sin(2x0-
π
6
)+
1
2
=0,得sin(2x0-
π
6
)=-
1
4
<0,
又由0≤x0
π
2
得-
π
6
≤2x0-
π
6
6

∴-
π
6
≤2x0-
π
6
≤0,故cos(2x0-
π
6
)=
15
4

此时cos2x0=cos[(2x0-
π
6
)+
π
6
]=cos(2x0-
π
6
)cos
π
6
-sin(2x0-
π
6
)sin
π
6
=
15
4
×
3
2
-(-
1
4
)×
1
2
=
3
5
+1
8
点评:本题考查三角函数中的恒等变换应用,考查正弦函数的周期性与单调性,考查同角三角函数间的关系的应用及两角和的余弦,突出考查等价转化思想与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an},{bn}满足a1=b1,且对任意正整数n,{an}中小于等于n的项数恰为bn;{bn}中小于等于n的项数恰为an
(1)求a1
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωx+cos(ωx+
π
3
)+cos(ω-
π
3
)-1(ω>0,x∈R),且函数f(x)的最小正周期为π.
(1)求函数f(x)的解析式并求f(x)的对称中心;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(B)=1,S△ABC=
3
3
4
,且a+c=3+
3
,求边长b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x-1)lnx,g(x)=x3+(a-1)x2-ax.
(1)求函数f(x)在[t,t+
1
2
](t>0)上的最小值;
(2)是否存在整数a,使得对任意x∈[1,+∞),(x+1)f(x)≤g(x)恒成立,若存在,求a的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x4+ax3+bx+c(a,b,c∈R),g(x)=f′(x)且g(0)=g(1).
(Ⅰ)求实数a的值;
(Ⅱ)若任意x1、x2∈[0,1]且x2>x1,求证:|g(x2)-g(x1)|<8|x2-x1|;
(Ⅲ)当b≤
16
3
9
时,请判断曲线f(x)的所有切线中,斜率λ为正数时切线的条数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数(m2-5m+6)+(m2-3m)i(m为实数,i为虚数单位)是纯虚数,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将三个半径为3的球两两相切地放在水平桌面上,若在这三个球的上方放置一个半径为1的小球,使得这四个球两两相切,则该小球的球心到桌面的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的可导函数,其导函数记为f′(x),若对于任意的实数x,有f(x)>f′(x),且y=f(x)-1是奇函数,则不等式f(x)<ex的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=ln(3-x)},则A∩N=
 

查看答案和解析>>

同步练习册答案