分析 (1)根据求和公式列方程解出a1即可得出an;
(2)证明{an2}是等比数列,代入求和公式计算.
解答 解:(1)∵S6=$\frac{21}{2}$,公比q=-$\frac{1}{2}$.
∴$\frac{{a}_{1}(1-(-\frac{1}{2})^{6})}{1-(-\frac{1}{2})}$=$\frac{21}{2}$,解得a1=16.
∴an=16•(-$\frac{1}{2}$)n-1=(-1)n-1•25-n.
(2)设bn=an2,则$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{{a}_{n+1}}^{2}}{{{a}_{n}}^{2}}$=(-$\frac{1}{2}$)2=$\frac{1}{4}$.
∴{bn}是以162为首项,以$\frac{1}{4}$为公比的等比数列,
∴a12+a22+a32+…+an2=$\frac{1{6}^{2}(1-\frac{1}{{4}^{n-1}})}{1-\frac{1}{4}}$=$\frac{{4}^{5}}{3}$(1-$\frac{1}{{4}^{n-1}}$).
点评 本题考查了等比数列的判断,求和公式和通项公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$\overrightarrow{a},\overrightarrow{b}$满足|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,且$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}$>$\overrightarrow{b}$ | B. | |$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$| | ||
| C. | |$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$| | D. | |$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$|-|$\overrightarrow{b}$| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}或3$ | B. | $-\frac{1}{2}或3$ | C. | $\frac{1}{2}或1$ | D. | $-\frac{1}{2}或1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com