精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=ln($\frac{1}{2}$$+\frac{1}{2}$ax)+x2-ax (a为常数,a>0).
(Ⅰ)若x=$\frac{1}{2}$是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在[$\frac{1}{2}$,+∞]上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在x0∈[$\frac{1}{2}$,1],使不等式f(x0)>m(1-a2)成立,求实数m的取值范围.

分析 (Ⅰ)求出函数的导数,得到关于a的方程,解出即可;
(Ⅱ)分情况讨论当0<a≤2时,当a>2时从而得到单调区间;
(Ⅲ)问题等价于对任意的a∈(1,2),不等式ln($\frac{1}{2}$+$\frac{1}{2}$a)+1-a+m(a2-1)>0恒成立,记g(a)=ln($\frac{1}{2}$+$\frac{1}{2}$a0+1-a+m(a2-1),(1<a<2),根据函数的单调性求出m的范围即可.

解答 解:f′(x)=$\frac{\frac{1}{2}a}{\frac{1}{2}+\frac{1}{2}ax}$+2x-a=$\frac{2ax(x-\frac{{a}^{2}-2}{2a})}{1+ax}$,(x>-$\frac{1}{a}$),
(Ⅰ)由已知,得f′($\frac{1}{2}$)=0⇒$\frac{{a}^{2}-2}{2a}$=$\frac{1}{2}$,
∴a2-a-2=0,∵a>0,∴a=2,
经检验,a=2满足条件.
(Ⅱ)当0<a≤2时,
∵$\frac{{a}^{2}-2}{2a}$-$\frac{1}{2}$=$\frac{(a-2)(a+1)}{2a}$≤0,∴$\frac{{a}^{2}-2}{2a}$≤$\frac{1}{2}$,
当x≥$\frac{1}{2}$时,x-$\frac{{a}^{2}-2}{2a}$≥0,
又∵$\frac{2ax}{1+ax}$>0,∴f′(x)≥0,
故f(x)在[$\frac{1}{2}$,+∞)上是增函数.
(Ⅲ)当a∈(1,2)时,由(Ⅱ)知,
f(x)在[$\frac{1}{2}$,1]上的最大值为f(1)=ln($\frac{1}{2}$+$\frac{1}{2}$a)+1-a,
于是问题等价于:对任意的a∈(1,2),
不等式ln($\frac{1}{2}$+$\frac{1}{2}$a)+1-a+m(a2-1)>0恒成立.
记g(a)=ln($\frac{1}{2}$+$\frac{1}{2}$a0+1-a+m(a2-1),(1<a<2),
则g′(a)=$\frac{1}{1+a}$-1+2ma=$\frac{a}{1+a}$[2ma-(1-2m)],
当m≤0时,有2ma-(1-2m)=2m(a+1)-1<0,且$\frac{a}{1+a}$>0,
∴g(a)在区间(1,2)上递减,且g(1)=0,
则m≤0不可能使g(a)>0恒成立,故必有m>0;
当m>0,且g′(a)=$\frac{2ma}{1+a}$[a-($\frac{1}{2m}$-1)],
若$\frac{1}{2m}$-1>1,可知g(a)在区间D=(1,min{2,$\frac{1}{2m}$-1})上递减,
在此区间D上有g(a)<g(1)=0,与g(a)>0恒成立矛盾,
故$\frac{1}{2m}$-1≤1,这时g′(a)>0,即g(a)在(1,2)上递增,
恒有g(a)>g(1)=0满足题设要求.
∴$\left\{\begin{array}{l}{m>0}\\{\frac{1}{2m}-1≤1}\end{array}\right.$⇒m≥$\frac{1}{4}$,
∴实数m的取值范围为[$\frac{1}{4}$,+∞).

点评 本题考察了函数的单调性,函数的最值问题,导数的应用,求参数的范围,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.定积分${∫}_{1}^{e}$$\frac{1}{x}$dx的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,某地区有一块长方形植物园ABCD,AB=8(百米),BC=4(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG满足下列要求:E在CD的延长线上,H在BA的延长线上,DE=0.5(百米),AH=4(百米),N为AH的中点,FN⊥AH,EF为曲线段,它上面的任意一点到AD与AH的距离乘积为定值,FG,GH均为线段,GH⊥HA,GH=0.5(百米).
(1)求四边形FGHN的面积;
(2)已知音乐广场M在AB上,AM=2(百米),若计划在EFG的某一处P开一个植物园大门,在原植物园ABCD内选一点Q,为中心建一个休息区,使得QM=PM,且∠QMP=90°,问点P在何处,AQ最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知球内接正四棱锥P-ABCD的高为3,AC,BC相交于O,球的表面积为$\frac{169π}{9}$,若E为PC中点.
(1)求异面直线BP和AD所成角的余弦值;
(2)求点E到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接收雨水.如果某个天池盆的盆口直径为盆底直径的两倍,盆深为h(单位:寸),则该天池盆可测量出平面降雨量的最大值为(单位:寸)
提示:上、下底面圆的半径分别为R、r,高为h的圆台的体积的计算公式为V=$\frac{1}{3}$πh(R2+r2+Rr)(  )
A.$\frac{7}{12}$hB.$\frac{3}{4}$hC.$\frac{1}{2}$hD.h

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],则f(x)的最小值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图多面体ABCD中,面ABCD为正方形,棱长AB=2,AE=3,DE=$\sqrt{5}$,二面角E-AD-C的余弦值为$\frac{{\sqrt{5}}}{5}$,且EF∥BD.
(1)证明:面ABCD⊥面EDC;
(2)若直线AF与平面ABCD所成角的正弦值为$\frac{2}{3}$,求二面角AF-E-DC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}的前n项和为Sn,若S6=$\frac{21}{2}$,公比q=-$\frac{1}{2}$.
(1)求数列{an}的通项公式;
(2)求和:a12+a22+a32+…+an2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.tan1020°=(  )
A.$-\sqrt{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案