精英家教网 > 高中数学 > 题目详情
4.已知球内接正四棱锥P-ABCD的高为3,AC,BC相交于O,球的表面积为$\frac{169π}{9}$,若E为PC中点.
(1)求异面直线BP和AD所成角的余弦值;
(2)求点E到平面PAD的距离.

分析 由已知球的表面积求出球的半径,再由棱锥的高可得球心到正四棱锥底面中心的距离,求解三角形得正四棱锥的底面边长.
(1)找出异面直线BP和AD所成角,求解三角形可得异面直线BP和AD所成角的余弦值;
(2)利用等积法求点E到平面PAD的距离.

解答 解:由球的表面积公式S=4πR2,得球的半径$R=\frac{13}{6}$,
设球心为O1,在正四棱锥P-ABCD中,高为PO,则O1必在PO上,
连AO1,则${O_1}O=\frac{5}{6},A{O_1}=\frac{13}{6}$,
则在Rt△O1OA,有$OO_1^2+O{A^2}={O_1}{A^2}$,
即OA=2,可得正方形ABCD的边长为$2\sqrt{2}$,
侧棱$PA=\sqrt{O{P^2}+O{A^2}}=\sqrt{13}$.
(1)在正方形ABCD中,BC∥AD,∠PBC是异面直线BP和AD所成的角或其补角,
取BC中点M,在等腰△PBC中,可得PM⊥BC,斜高$PM=\sqrt{11}$,
则在Rt△PMB中,$cos∠PBC=\frac{BM}{PB}=\frac{{\sqrt{2}}}{{\sqrt{13}}}=\frac{{\sqrt{26}}}{13}$,
∴异面直线BP和AD所成的角的余弦值为$\frac{{\sqrt{26}}}{13}$;
(2)由O,E为CA,CP中点,得OE∥AP,
且满足OE?平面PAD,AP?平面PAD,∴OE∥平面PAD,
∴E到平面PAD的距离等于O到平面PAD的距离,
又∵${S_{△PAD}}=\frac{1}{2}•2\sqrt{2}•\sqrt{11}=\sqrt{22},{S_{△AOD}}=\frac{1}{2}•2•2=2$,
再设O到平面PAD的距离为h,则由VE-PAD=VO-PAD=VP-AOD
可得$\frac{1}{3}•{S_{△PAD}}•h=\frac{1}{3}•{S_{△AOD}}•PO$,则$h=\frac{{3\sqrt{22}}}{11}$,
∴点E到平面PAD的距离$\frac{{3\sqrt{22}}}{11}$.

点评 本题考查空间中点线面间的距离计算,考查异面直线所成角的求法,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图,在平面四边形ABCD中,已知∠A=$\frac{π}{2}$,∠B=$\frac{2π}{3}$,AB=6.在AB边上取点E使得BE=1,连结EC,ED,若∠CED=$\frac{2π}{3}$,EC=$\sqrt{7}$.则CD=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.有100件产品编号从00到99,用系统抽样方法从中抽取5件产品进行检验,分组后每组按照相同的间隔抽取产品,若第5组抽取的产品编号为91,则第2组抽取的产品编号为31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数$y=sin({2x-\frac{π}{6}})$的图象向右平移$\frac{π}{4}$个单位,所得函数图象的一条对称轴方程为(  )
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{1}{x}+1,g(x)=x+\frac{1}{x}({x>0})$.
(1)求证函数f(x)与g(x)有相同的极值,并求出这个极值;
(2)函数h(x)=f(x)-ag(x)有两个极值点x1,x2(x1<x2),若h(x1)<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列关于命题的说法错误的是(  )
A.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
B.命题“若随机变量X~N(1,4),P(X≤0)=m,则P(0<X<2)=1-2m”为真命题
C.命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”
D.若命题P:?n∈N,2n>1000,则?P:?n∈N,2n>1000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ln($\frac{1}{2}$$+\frac{1}{2}$ax)+x2-ax (a为常数,a>0).
(Ⅰ)若x=$\frac{1}{2}$是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在[$\frac{1}{2}$,+∞]上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在x0∈[$\frac{1}{2}$,1],使不等式f(x0)>m(1-a2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且过点$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)是否存在直线l:y=kx+m(k>0)与E相交于P,Q两点,且满足①OP与OQ(O为坐标原点)的斜率之和为2;②直线l与圆x2+y2=1相切.若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$f(x)=|x+\frac{1}{x}-a|+|x-\frac{1}{x}-a|+2x-2a$ (x>0)的最小值为 $\frac{3}{2}$.则实数a=$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案