精英家教网 > 高中数学 > 题目详情
已知a,b,c,d是不全为0的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d,方程f(x)=0有实根,且f(x)=0的实数根都是g(f(x))=0的根,反之,g(f(x))=0的实数根都是f(x)=0的根.
(Ⅰ)求d的值;
(Ⅱ)若a=3,f(-1)=0,求c的取值范围.
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:(Ⅰ)设x0是f(x)=0的根,根据条件,利用待定系数法即可求d的值;
(Ⅱ)根据a=3,f(-1)=0,得到b=c,然后讨论c的取值范围,即可得到结论.
解答: 解(Ⅰ)设x0是f(x)=0的根,那么f(x0)=0,则x0是g(f(x))=0的根,则g(f(x0))=0即g(0)=0,所以d=0.
(Ⅱ)若a=3,f(-1)=0,所以b-c=0,即f(x)=0的根为0和-1,
①当c=0时,则b=0这时f(x)=0的根为一切实数,而是g(f(x))=0,所以c=0符合要求.
当c≠0时,因为3(cx2+cx)2+c(cx2+cx)+c=0的根不可能为0和-1,所以3(cx2+cx)2+c(cx2+cx)+c必无实数根,
②当c>0时,t=cx2+cx=c(x+
1
2
2-
c
4
≥-
c
4
,即函数h(t)=3t2+ct+c在t≥-
c
4
,h(t)>0恒成立,
又h(t)=3t2+ct+c=3(t+
c
6
2-
c2
12
+c,
所以h(t)min=h(-
c
6
)>0,即-
c2
12
+c>0,所以0<c<12;
③当c<0时,t=cx2+cx=c(x+
1
2
2-
c
4
≤-
c
4

即函数h(t)=3t2+ct+c在t≤-
c
4
,h(t)>0恒成立,
又h(t)=3t2+ct+c=3(t+
c
6
2-
c2
12
+c,
所以h(t)min=h(-
c
4
)>0,c2-16c<0,而c<0,舍去
综上,所以0≤c<12.
点评:本题主要考查函数根的应用,考查学生的运算能力,综合性较强,注意要对参数进行分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等边△ABC的边长为2
2
,AD是BC边上的高,将△ABD沿AD折起,使之与△ACD所在平面成120°的二面角,这时A点到BC的距离是(  )
A、
26
2
B、
13
C、3
D、2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线顶点在原点,开口向上,A为抛物线上一点,F为抛物线焦点,M为准线l与y轴的交点已知a=|AM|=
17
,|AF|=3,求此抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD是菱形,DA=DB=2,DD1⊥面ABCD,点P为线段OD1上的任一点.
(1)若DD1=2,DP⊥OD1,求OD与面D1AC所成角的正切值;
(2)若二面角C-AD1-D的平面角的余弦值为
15
5
,求线段DD1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-x+1
x
的值域是集合A,函数g(x)=lg[x2-(a+1)2x+a(a2+a+1)]的定义域是集合B,其中a是实数.
(1)分别求出集合A、B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以为圆心,|CO|为半径作圆.
(Ⅰ)设圆C与准线l交于不同的两点M、N:
(1)如图,若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|•|AN|,求圆C的坐标;
(Ⅱ)设圆C与准线l相切时,切点为Q,求四边形OFCQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,△ABC中,∠B=90°,AB=
2
,BC=1,D、E两点分别是线段AB、AC的中点,现将△ABC沿DE折成直二面角A-DE-B.

(Ⅰ)求证:面ADC⊥面ABE;
(Ⅱ)求直线AD与平面ABE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.
(1)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;
(2)表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2
表1:注射药物A后皮肤疱疹面积的频数分布表
疱疹面积[60,65)[65,70)[70,75)[75,80)
频数30402010
表2注射药物B后皮肤疱疹面积的频数分布表
疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85)
频数1025203015
(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(Ⅱ)分别估计出注射A,B两种药物后产生的皮肤疱疹的面积不小于70mm2的概率各是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx-
m
x
,g(x)=2lnx
(1)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当m=1时,判断方程f(x)=g(x)的实根个数;
(3 )若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案