精英家教网 > 高中数学 > 题目详情
设函数f(x)=
x2-x+1
x
的值域是集合A,函数g(x)=lg[x2-(a+1)2x+a(a2+a+1)]的定义域是集合B,其中a是实数.
(1)分别求出集合A、B;
(2)若A∪B=B,求实数a的取值范围.
考点:并集及其运算,函数的定义域及其求法
专题:集合
分析:(1)根据函数定义域和值域的求法分别求出集合A、B;
(2)若A∪B=B,则A⊆B,根据集合关系,建立不等式,即可求实数a的取值范围.
解答: 解:(1)由f(x)=
x2-x+1
x
=x+
1
x
-1知,
当x>0时,f(x)=x+
1
x
-1≥2
x•
1
x
-1=2-1=1

当x<0时,f(x)=x+
1
x
-1=-(-x-
1
x
)-1≤-2
-x•(-
1
x
)
-1=-2-1=-3

即A=(-∞,-3]∪[1,+∞).
由x2-(a+1)2x+a(a2+a+1)=(x-a)[x-(a2+a+1)]>0,解得得x<a或x>a2+a+1,
即B=(-∞,a)∪(a2+a+1,+∞).
(2)∵A∪B=B,∴A⊆B,
则有
a≥-3
a2+a+1≤1
,即
a≥-3
-1≤a≤0

解得-≤a≤0,即a的取值范围是[-1,0].
点评:本题主要考查函数定义域和值域的求解,以及集合关系的基本应用,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若O是平面上的定点,A、B、C是平面上不共线的三点,且满足
OP
=
OC
+λ(
CB
+
CA
)(λ∈R),则P点的轨迹一定过△ABC的(  )
A、外心B、内心C、重心D、垂心

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}中,且a2=4,a6=64.
(1)求数列{an}的通项公式;
(2)若bn=anlog2an,求数列{bn}的前n项和Tn
(3)求n•2n+1-Tn>50成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数列{an}为等比数列,其中a7=1,且a4,a5+1,a6成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数m,使得当n>m时,|an|<
1
2014
恒成立?若存在,求出m的值构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2-3x+a+4=0有两个整数根.
(1)求证:这两个整数根一个是奇数,一个是偶数;
(2)求证:a是负偶数;
(3)当方程的两整数根同号时,求a的值及这两个根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d是不全为0的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d,方程f(x)=0有实根,且f(x)=0的实数根都是g(f(x))=0的根,反之,g(f(x))=0的实数根都是f(x)=0的根.
(Ⅰ)求d的值;
(Ⅱ)若a=3,f(-1)=0,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只需一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人.现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别p1,p2,p3,假设p1,p2,p3互不相等,且假定各人能否完成任务的事件相互独立.
(1)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率.若改变三个人被派出的先后顺序,任务能被完成的概率是否会发生变化?
(2)若按某指定顺序派人,这三个人各自能完成任务的概率依次为q1,q2,q3,其中q1,q2,q3是p1,p2,p3的一个排列,求所需要派出人员数目为3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项和,且2an-1=Sn,n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}满足
b1
a1
+
b2
a2
+
b3
a3
+…+
bn
an
=n-
n
2n
,n∈N*,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=
log3(x+1)
x+1
(x>0)上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2,n∈N*),x1=2.
(1)求数列{xn}的通项公式;
(2)设梯形PnQnQn+1Pn+1的面积是Sn,Tn=
1
S1
+
1
2S2
+…+
1
nSn
,试比较Tn与3的大小:

查看答案和解析>>

同步练习册答案