精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{ax}{{e}^{x}+1}$+be-x,点M(0,1)在曲线y=f(x)上,且曲线在点M处的切线与直线2x-y=0垂直.
(1)求a,b的值;
(2)如果当x≠0时,都有f(x)>$\frac{x}{{e}^{x}-1}$+ke-x,求k的取值范围.

分析 (1)求出导数,求得切线的斜率和切点,由切线与2x-y=0垂直,可得a,b的方程,解方程可得a,b的值;
(2)由题意可得$\frac{x}{1+{e}^{x}}$+e-x>$\frac{x}{{e}^{x}-1}$+ke-x,即有(1-k)e-x>$\frac{2x}{{e}^{2x}-1}$,即1-k>$\frac{2x}{{e}^{x}-{e}^{-x}}$,可令g(x)=$\frac{2x}{{e}^{x}-{e}^{-x}}$,求出导数,判断单调性,可得最值,即可得到k的范围.

解答 解:(1)f(x)=$\frac{ax}{{e}^{x}+1}$+be-x的导数为
f′(x)=$\frac{a({e}^{x}+1)-ax{e}^{x}}{({e}^{x}+1)^{2}}$,
由切线与直线2x-y=0垂直,可得
f(0)=1,f′(0)=-$\frac{1}{2}$,
即有b=1,$\frac{1}{2}$a-b=-$\frac{1}{2}$,
解得a=b=1;
(2)当x≠0时,都有f(x)>$\frac{x}{{e}^{x}-1}$+ke-x
即为$\frac{x}{1+{e}^{x}}$+e-x>$\frac{x}{{e}^{x}-1}$+ke-x
即有(1-k)e-x>$\frac{2x}{{e}^{2x}-1}$,即1-k>$\frac{2x}{{e}^{x}-{e}^{-x}}$,
可令g(x)=$\frac{2x}{{e}^{x}-{e}^{-x}}$,g(-x)=$\frac{-2x}{{e}^{-x}-{e}^{x}}$=g(x),
即有g(x)为偶函数,只要考虑x>0的情况.
由g(x)-1=$\frac{2x-{e}^{x}-{e}^{-x}}{{e}^{x}-{e}^{-x}}$,
x>0时,ex>e-x
由h(x)=2x-ex+e-x,h′(x)=2-(ex+e-x)≤2-2$\sqrt{{e}^{x}•{e}^{-x}}$=0,
则h(x)在x>0递减,即有h(x)<h(0)=0,
即有g(x)<1.
故1-k≥1,解得k≤0.
则k的取值范围为(-∞,0].

点评 本题考查导数的运用:求切线的斜率和单调性,考查不等式恒成立问题的解法,注意运用参数分离和构造函数,求出导数,判断单调性,求出最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知sinθ=-$\frac{5}{13}$,且2kπ+$\frac{3π}{2}$<θ<2kπ+2π,则cosθ=$\frac{12}{13}$,tanθ=-$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}的前n项和为Sn,若对任意n∈N*,都有${S_n}={(-1)^n}{a_n}+\frac{1}{2^n}+n-3$,则数列{a2n-1}的前n项和为$\frac{1}{{2}^{n-2}}$-$\frac{1}{{4}^{n}}$-3+2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有(  )种.
A.14B.18C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z=$\frac{|8+6i|}{6-8i}$(i是虚数单位),则z的虚部为(  )
A.4B.$\frac{4}{5}$C.-4D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=2,a2=6,且数列{an-1-an}{n∈N*}是公差为2的等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,求满足不等式Sn>$\frac{2015}{2016}$的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知①x=x-1,②x=x-2,③x=x-3,④x=x-4在如图所示的程序框图中,如果输入x=10,而输出y=4,则在空白处可填入(  )
A.①②③B.②③C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=|lnx|-$\frac{1}{8}$x2的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=(x-1)2,g(x)=a(lnx)2,其中a∈R,且a≠0.
(I)若直线x=e(e为自然对数的底数)与曲线y=f(x)和y=g(x)分别交于 A、B两点,且曲线y=f(x)在点A处的切线与曲线y=g(x)在点B处的切线互相平行,求a的值;
(Ⅱ)设h(x)=f(x)+mlnx(m∈R,且m≠0)有两个极值点x1,x2,且x1<x2,证明:$h({x_2})>\frac{1-2ln2}{4}$.

查看答案和解析>>

同步练习册答案