10£®ÒÔÖ±½Ç×ø±êϵxOyµÄ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+t}\\{y=2-t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{4}{\sqrt{co{s}^{2}¦È+1}}$£®
£¨1£©ÇóÖ±Ïßl¼°ÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÉèP£¨2£¬2£©£¬Ö±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+t}\\{y=2-t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{4}{\sqrt{co{s}^{2}¦È+1}}$£¬¿ÉµÃ£º¦Ñ2£¨2cos2¦È+sin2¦È£©=16£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÉèP£¨2£¬2£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º3t2-4$\sqrt{2}$t-8=0£¬ÀûÓÃ|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+t}\\{y=2-t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý¿ÉµÃ£ºx+y=4£®
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{4}{\sqrt{co{s}^{2}¦È+1}}$£¬¿ÉµÃ£º¦Ñ2£¨2cos2¦È+sin2¦È£©=16£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£º2x2+y2=16£¬»¯Îª£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{16}$=1£®
£¨2£©ÉèP£¨2£¬2£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º3t2-4$\sqrt{2}$t-8=0£¬
¡àt1+t2=$\frac{4\sqrt{2}}{3}$£¬t1•t2=-$\frac{8}{3}$
¡à|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{£¨\frac{4\sqrt{2}}{3}£©^{2}-4¡Á£¨-\frac{8}{3}£©}$=$\frac{4\sqrt{6}}{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¼°ÆäÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªtan¦Á=2£¬Ôòtan£¨¦Á-$\frac{¦Ð}{4}$£©=£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ£¨a-c£©£¨sinA+sinC£©=£¨b-$\sqrt{3}$c£©sinB
£¨1£©Çó½ÇA
£¨2£©Èôf£¨x£©=cos2£¨x+A£©-sin2£¨x-A£©£¬Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎªÑ¡°ÎÑ¡Êֲμӡ°Öйúºº×ÖÌýд´ó»á¡±£¬Ä³ÖÐѧ¾ÙÐÐÁËÒ»´Î¡°ºº×ÖÌýд´óÈü¡±»î¶¯£®ÎªÁËÁ˽Ȿ´Î¾ºÈüѧÉúµÄ³É¼¨Çé¿ö£¬´ÓÖгéÈ¡Á˲¿·ÖѧÉúµÄ·ÖÊý£¨µÃ·ÖÈ¡ÕýÕûÊý£¬Âú·ÖΪ100 ·Ö£©×÷ΪÑù±¾£¨Ñù±¾ÈÝÁ¿Îªn £©½øÐÐͳ¼Æ£®°´ÕÕ[50£¬60£©£¬[60£¬70£©[70£¬80£©[80£¬90£©[90£¬100£©µÄ·Ö×é×÷³öƵÂÊ·Ö²¼Ö±·½Í¼£¬²¢×÷³öÑù±¾·ÖÊýµÄ¾¥Ò¶Í¼£¨Í¼ÖнöÁгöÁ˵÷ÖÔÚ[50£¬60£©£¬[90£¬100£©µÄÊý¾Ý£©£®
£¨1£©ÇóÑù±¾ÈÝÁ¿n ºÍƵÂÊ·Ö²¼Ö±·½Í¼ÖеÄx£¬y µÄÖµ£»
£¨2£©ÔÚѡȡµÄÑù±¾ÖУ¬´Ó¾ºÈü³É¼¨ÔÚ80·ÖÒÔÉϵÄѧÉúÖÐËæ»ú³éÈ¡2 ÃûѧÉú²Î¼Ó¡°Öйúºº×ÖÌýд´ó»á¡±£¬ÇóËù³éÈ¡µÄ2ÃûѧÉúÖÐÖÁÉÙÓÐÒ»È˵÷ÖÔÚ[90£¬100£©ÄڵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®º¯Êýf£¨x£©=ax-xlna£¨a£¾0ÇÒa¡Ù1£©µÄ×îСֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÏÂÁк¯ÊýÖУ¬¶¨ÒåÓòΪRµÄżº¯ÊýÊÇ£¨¡¡¡¡£©
A£®y=$\sqrt{{x}^{2}-1}$B£®y=ex-e-xC£®y=ln|x|D£®y=x${\;}^{\frac{2}{3}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èô·½³Ìlnx+x=3ÔÚÇø¼ä£¨a£¬a+1£©£¨a¡ÊN£©ÉÏÇ¡ÓÐÒ»¸ù£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1a2a3¡­an=2${\;}^{{b}_{n}}$£¨n¡ÊN*£©£®Èô{an}ÊǸ÷ÏîΪÕýÊýµÄµÈ±ÈÊýÁУ¬ÇÒa1=2£¬b3=b2+3£®
£¨¢ñ£©ÇóanÓëbn£»
£¨¢ò£©Éècn=$\frac{1}{a_n}-\frac{1}{b_n}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍΪSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÈôÔ²x2+y2+dx+ey+f=0ÓëÁ½×ø±êÖá¶¼ÏàÇУ¬Ôò³£Êýd£¬e£¬fÖ®¼äµÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®d¡Ù0ÇÒe2=4fB£®d¡Ù0ÇÒe2¡Ù4fC£®d=eÇÒe2¡Ù4fD£®d2=e2=4f£¾0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸