精英家教网 > 高中数学 > 题目详情
15.下列函数中,定义域为R的偶函数是(  )
A.y=$\sqrt{{x}^{2}-1}$B.y=ex-e-xC.y=ln|x|D.y=x${\;}^{\frac{2}{3}}$

分析 根据题意,依次分析选项中函数的定义域以及奇偶性,综合即可得答案.

解答 解:根据题意,依次分析选项:
对于A、函数f(x)=$\sqrt{{x}^{2}-1}$,其定义域为{x|x≤-1或x≥1},不符合题意;
对于B、函数f(x)=ex-e-x,其定义域为R,关于原点对称,且f(-x)=-f(x),为奇函数,不符合题意;
对于C、函数f(x)=ln|x|,其定义域为{x|x≠0},不符合题意;
对于D、函数f(x)=${x}^{\frac{2}{3}}$=$\root{3}{{x}^{2}}$,其定义域为R,且f(-x)=f(x),为偶函数,符合题意;
故选:D.

点评 本题考查函数的奇偶性的判定,关键是理解函数奇偶性的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=4-log2x,x∈[2,8],则f(x)的值域是[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2$\sqrt{5}$,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为$\frac{{x}^{2}}{4}-{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.6名大学毕业省先分成三组,其中两组各1人,一组4人,再分配到3个不同的工作岗位实习,则符合条件的不同分法数为90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=2+t}\\{y=2-t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=$\frac{4}{\sqrt{co{s}^{2}θ+1}}$.
(1)求直线l及曲线C的普通方程;
(2)设P(2,2),直线l与曲线C相交于A、B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个箱子里装有7只好灯泡、3只坏灯泡,从中取两次,每次任取一只,每次取后不放回,已知第一次取到的是好灯泡,则第二次取到的还是好灯泡的概率是(  )
A.$\frac{2}{3}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.运行如图程序框图.
(1)当输入x值等于-1时,求输出y的值;
(2)当输出y的值最大值时,求输入x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,焦距是实轴长的$\sqrt{2}$倍且过点(4,-$\sqrt{10}$)
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:点M在以F1F2为直径的圆上;
(3)在(2)条件下,若M F2交双曲线另一点N,求△F1MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高三参加第一次诊断考试后,随机抽取了10名学生的数学成绩(单位:分),用茎叶图列举出来如图.
(1)求抽取样本的平均数$\overline{x}$和样本方差s2
(2)对所有学生得成绩统计发现,数学成绩X服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline{x}$,σ2近似为样本方差s2,若从所有学生中随机抽取1名,求该生数学成绩在(89.7,120.3)的概率.
附:$\sqrt{106}$≈10.30,P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

同步练习册答案