精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C的对边分别为a,b,c,且(a-c)(sinA+sinC)=(b-$\sqrt{3}$c)sinB
(1)求角A
(2)若f(x)=cos2(x+A)-sin2(x-A),求f(x)的单调递增区间.

分析 (1)利用正弦定理和余弦定理,求出cosA以及A的值;
(2)利用三角恒等变换化简f(x),根据三角函数的性质求出f(x)的单调增区间.

解答 解:(1)由(a-c)(sinA+sinC)=(b-$\sqrt{3}$c)sinB,
利用正弦定理 $\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,(不交代定理扣1分)
得$(a-c)(a+c)=(b-\sqrt{3}c)b$,
即 ${a^2}={b^2}+{c^2}-\sqrt{3}bc$;…(3分)
由余弦定理(不交代定理扣1分)得:
cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{\sqrt{3}bc}{2bc}$=$\frac{\sqrt{3}}{2}$,…(5分)
由0<A<π,
则$A=\frac{π}{6}$…(7分)
(2)f(x)=cos2(x+A)-sin2(x-A)
=cos2(x+$\frac{π}{6}$)-sin2(x-$\frac{π}{6}$)
=$\frac{1+cos(2x+\frac{π}{3})}{2}$-$\frac{1-cos(2x-\frac{π}{3})}{2}$
=$\frac{1}{2}$(cos2xcos$\frac{π}{3}$-sin2xsin$\frac{π}{3}$)+$\frac{1}{2}$(cos2xcos$\frac{π}{3}$+sin2xsin$\frac{π}{3}$)
=$\frac{1}{2}$cos2x,…(12分)
令π+2kπ≤2x≤2π+2kπ,k∈Z,
解得$\frac{π}{2}$+kπ≤x≤π+kπ,k∈Z,(不交代k∈Z合计扣1分)
∴f(x)的单调递增区间为[$\frac{π}{2}$+kπ,π+kπ],k∈Z.…(14分)

点评 本题考查了正弦、余弦定理的应用问题,也考查了三角恒等变换问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设集合M={x|x2-2x-3≥0},N={x|-3<x<3},则(  )
A.M⊆NB.N⊆MC.M∪N=RD.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在正方体ABCD-A1B1C1D1中,直线BB1与平面ACD1所成角的余弦值为(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数 z=$\frac{5}{1+2i}$(i是虚数单位),则复数z的模为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2$\sqrt{5}$,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为$\frac{{x}^{2}}{4}-{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.证明:CA是△ABC外接圆的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=2+t}\\{y=2-t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=$\frac{4}{\sqrt{co{s}^{2}θ+1}}$.
(1)求直线l及曲线C的普通方程;
(2)设P(2,2),直线l与曲线C相交于A、B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.微信运动和运动手环的普及,增强了人民运动的积极性,每天一万步称为一种健康时尚,某中学在全校范围内内积极倡导和督促师生开展“每天一万步”活动,经过几个月的扎实落地工作后,学校想了解全校师生每天一万步的情况,学校界定一人一天走路不足4千步为不健康生活方式,不少于16千步为超健康生活方式者,其他为一般生活方式者,学校委托数学组调查,数学组采用分层抽样的办法去估计全校师生的情况,结合实际及便于分层抽样,认定全校教师人数为200人,高一学生人数为700人,高二学生人数600人,高三学生人数500,从中抽取n人作为调查对象,得到了如图所示的这n人的频率分布直方图,这n人中有20人被学校界定为不健康生活方式者.
(1)求这次作为抽样调查对象的教师人数;
(2)根据频率分布直方图估算全校师生每人一天走路步数的中位数(四舍五入精确到整数步);
(3)校办公室欲从全校师生中速记抽取3人作为“每天一万步”活动的慰问对象,计划学校界定不健康生活方式者鞭策性精神鼓励0元,超健康生活方式者表彰奖励20元,一般生活方式者鼓励性奖励10元,利用样本估计总体,将频率视为概率,求这次校办公室慰问奖励金额X的分布列和数学期望.

查看答案和解析>>

同步练习册答案