精英家教网 > 高中数学 > 题目详情
15.若椭圆的中心为坐标原点,长轴长为4,一条准线方程为x=-4,则该椭圆被直线y=x+1截得的弦长为$\frac{24}{7}$.

分析 设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意,利用椭圆性质求出椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,由此能求出该椭圆被直线y=x+1截得的弦长.

解答 解:设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意,椭圆的焦点在x轴上,且2a=4,$\frac{{a}^{2}}{c}$=4,
解得a=2,c=1,∴b2=a2-c2=3,
∴椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1,
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=x+1}\end{array}\right.$,得7x2+8x-8=0,
设直线y=x+1与椭圆交于A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{8}{7}$,x1x2=-$\frac{8}{7}$,
∴该椭圆被直线y=x+1截得的弦长为:
|AB|=$\sqrt{2[(-\frac{8}{7})^{2}+4×\frac{8}{7}]}$=$\frac{24}{7}$.
故答案为:$\frac{24}{7}$.

点评 本题考查椭圆弦长的求法,是中档题,解题时要认真审题,注意椭圆的简单性质和椭圆弦长公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.假如现在时间是下午四点整,请问手表上时针与分针所成的角是多少度(写出其中个即可),到当天晚上六点半时,时针和分针各转了多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线a上的所有点到两条直线m、n的距离都相等,则称直线a为“m、n的等距线”.在正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱中点,M、N分别为EH、FG中点,则在直线MN,EG,FH,B1D中,是“A1D1、AB的等距线”的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l⊥平面α,垂足是点P,正四面体OABC的棱长为2,点O在平面α上运动,点A在直线l上运动,则点P到直线BC的距离的最大值为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若三条直线ax+y+3=0,x+y+2=0和2x-y+1=0相交于一点,则行列式$|\begin{array}{l}{a}&{1}\\{1}&{1}\end{array}|$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PD⊥面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求∠ADC;
(2)求证:BC⊥PC;
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在棱长为2的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=$2\sqrt{5}$的点P的个数为12;若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是(2$\sqrt{3}$,2$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设经过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的任意两点的连线(该连线不与x轴垂直)的垂直平分线与x轴交点的横坐标为x0,则x0的取值范围是(  )
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-1,1]D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以下四个命题:
①若函数y=ex-mx(x∈R)有大于零的极值点,则实数m>1;
②若抛物线x2=4y上一点M到焦点的距离为3,则点M到x轴的距离为2;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则$\frac{a}{b}$的值为-2或-$\frac{2}{3}$.
其中真命题的序号为①②③(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案