精英家教网 > 高中数学 > 题目详情
9.在△ABC中,A、B、C的对边分别为a,b,c,3sinAcosB+bsinAcosA=3sinC(A≠$\frac{π}{2}$).
(I)求a的值;
(Ⅱ)若A=$\frac{2π}{3}$,求△ABC周长的最大值.

分析 (I)由已知式子和三角函数公式可得bsinA=3sinB,由正弦定理可得a=$\frac{bsinA}{sinB}$=3;
(Ⅱ)由A=$\frac{2π}{3}$可得C=$\frac{π}{3}$-B,B∈(0,$\frac{π}{3}$),由正弦定理可得b和c,可得△ABC周长,由三角函数的最值可得.

解答 解:(I)∵在△ABC中3sinAcosB+bsinAcosA=3sinC,
∴3sinAcosB+bsinAcosA=3sin(A+B),
∴3sinAcosB+bsinAcosA=3sinAcosB+3cosAsinB,
∴bsinAcosA=3cosAsinB,∵A≠$\frac{π}{2}$,∴cosA≠0,
两边同除以cosA可得bsinA=3sinB,
∴由正弦定理可得a=$\frac{bsinA}{sinB}$=3;
(Ⅱ)∵A=$\frac{2π}{3}$,∴C=$\frac{π}{3}$-B,B∈(0,$\frac{π}{3}$),
由正弦定理可得b=$\frac{asinB}{sinA}$=2$\sqrt{3}$sinB,c=$\frac{asinC}{sinA}$=2$\sqrt{3}$sinC,
∴△ABC周长为3+2$\sqrt{3}$sinB+2$\sqrt{3}$sinC=3+2$\sqrt{3}$sinB+2$\sqrt{3}$sin($\frac{π}{3}$-B)
=3+2$\sqrt{3}$sinB+2$\sqrt{3}$($\frac{\sqrt{3}}{2}$cosB-$\frac{1}{2}$sinB)
=3+2$\sqrt{3}$sinB+3cosB-$\sqrt{3}$sinB
=3+$\sqrt{3}$sinB+3cosB
=3+2$\sqrt{3}$($\frac{1}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB)
=3+2$\sqrt{3}$sin(B+$\frac{π}{3}$)
∵B∈(0,$\frac{π}{3}$),∴B+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{2π}{3}$),
∴当B+$\frac{π}{3}$=$\frac{π}{2}$即B=$\frac{π}{6}$时,三角形的周长取最大值3+2$\sqrt{3}$.

点评 本题考查正余弦定理解三角形,涉及和差角的三角函数公式和三角函数的最值,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若p:a,b∈R+;q:a2+b2≥2ab,则(  )
A.p是q充要条件
B.p是q的充分条件,但不是q的必要条件
C.p是q的必要条件,但不是q的充分条件
D.p既不是q的充分条件,也不是q的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球,乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球.若摸中甲箱中的红球,则可获奖金m元,若摸中乙箱中的红球,则可获奖金n元.活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.
(1)如果参与者先在乙箱中摸球,求其恰好获得奖金n元的概率;
(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知梯形ABCD如图所示,连接AC,AD:DC:AC:BC:AB=1:1:$\sqrt{2}$:$\sqrt{2}$:2,现沿AC将梯形ABCD折叠成三棱锥D-ABC,则当三棱锥D-ABC的体积最大时,二面角D-AB-C的正切值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC中,内角A和B满足关系式cosAcosB>sinA•sinB,那么△ABC是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.任意三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.使“a<b”成立的必要不充分条件是“②③④”(填上所有满足题意的序号)
①?x>0,a≤b+x;
②?x≥0,a+x<b;
③?x≥0,a<b+x;
④?x>0,a+x≤b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在极坐标系下,已知A(1,0),B(1,$\frac{π}{2}$),求过A,B两点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=sinx的定义域为[a,b],值域是[-$\frac{1}{2}$,1],则b-a的最大值是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知0<θ<π,cotθ=t,则cosθ=$\frac{\sqrt{{t}^{2}+1}}{t}$.

查看答案和解析>>

同步练习册答案