分析 利用同角三角函数关系式求解.
解答 解:∵0<θ<π,cotθ=t,
∴tanθ=$\frac{1}{t}$,
∴cos2θ=1+tan2θ=1+$\frac{1}{{t}^{2}}$,
∴当t>0时,cosθ=$\sqrt{1+\frac{1}{{t}^{2}}}$=$\frac{\sqrt{{t}^{2}+1}}{t}$,
当t<0时,cosθ=-$\sqrt{1+\frac{1}{{t}^{2}}}$=$\frac{\sqrt{{t}^{2}+1}}{t}$.
∴cosθ=$\frac{\sqrt{{t}^{2}+1}}{t}$.
故答案为:$\frac{\sqrt{{t}^{2}+1}}{t}$.
点评 本题考查余弦函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}+1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com