分析 由定积分公式计算阴影部分的面积,进而由几何概型公式计算可得答案.
解答 解:根据题意,正方形OABC的面积为1×1=1,
由函数y=x与y=$\sqrt{x}$围成阴影部分的面积为∫01($\sqrt{x}$-x)dx=($\frac{2}{3}{x}^{\frac{3}{2}}$-$\frac{{x}^{2}}{2}$)|01=$\frac{1}{6}$,
由于y=x2与y=$\sqrt{x}$互为反函数,所以阴影部分的面积为$\frac{1}{3}$,
则正方形OABC中任取一点P,点P取自阴影部分的概率为$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 本题考查几何概型的计算,涉及定积分在求面积中的应用,利用积分的几何意义正确计算出阴影部分的面积是解决本题的关键..
科目:高中数学 来源: 题型:解答题
| 空气质量指数 | 污染程度 |
| 小于100 | 优良 |
| 大于100且小于150 | 轻度 |
| 大于150且小于200 | 中度 |
| 大于200且小于300 | 重度 |
| 大于300且小于500 | 严重 |
| 大于500 | 爆表 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?n∈N*,$\frac{1}{n}$≤$\frac{1}{n+1}$ | B. | ?n∈N*,$\frac{1}{n}$<$\frac{1}{n+1}$ | ||
| C. | ?n∈N*,$\frac{1}{{n}_{0}}$≤$\frac{1}{{n}_{0}+1}$ | D. | ?n0∈N*,$\frac{1}{{n}_{0}}$<$\frac{1}{{n}_{0}+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | 1008 | C. | 22016 | D. | 21008 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既非充分也非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com