精英家教网 > 高中数学 > 题目详情
14.使“a<b”成立的必要不充分条件是“②③④”(填上所有满足题意的序号)
①?x>0,a≤b+x;
②?x≥0,a+x<b;
③?x≥0,a<b+x;
④?x>0,a+x≤b.

分析 根据不等式的关系结合必要不充分条件分别进行判断即可.

解答 解:①若a<b,?x>0,则a+x<b+x,
∵a<a+x,
∴a<a+x<b+x,即a<b+x,则a≤b+x不一定成立;故①错误,
②若a<b,当a=2,b=4,?x=1≥0,有a+x<b成立,反之不一定成立;故②满足条件.
③?x≥0,由a<b得a+x<b+x,
∵x≥0,∴a+x≥a,即a≤a+x<b+x
则a<b+x成立,故③满足条件,
④若a<b,当a=2,b=3,?x=1>0,有a+x≤b成立,反之不一定成立;故④满足条件.
故答案为:②③④.

点评 本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知全集U={l,2,3,4,5},集合A={2,3,4},B={l,4}则(∁UA)∩B为(  )
A.{1}B.{1,5}C.{1,4}D.{1,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若x2+2xy-y2=7(x,y∈R).求x2+y2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若O为△ABC内一点,且2$\overrightarrow{OA}$$+7\overrightarrow{OB}$$+6\overrightarrow{OC}$=$\overrightarrow{0}$,三角形ABC的面积是三角形OAB面积的λ倍,则λ=(  )
A.$\frac{5}{2}$B.$\frac{15}{2}$C.$\frac{15}{7}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,A、B、C的对边分别为a,b,c,3sinAcosB+bsinAcosA=3sinC(A≠$\frac{π}{2}$).
(I)求a的值;
(Ⅱ)若A=$\frac{2π}{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知实数x、y满足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求x2+y2的最大值和最小值;
(3)若b=x+y,求b的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要得到函数y=3sin2x(x∈R)的图象,只要将函数y=3sin(2x+1)(x∈R)的图象(  )
A.向左平移1个位长度,纵坐标不变B.向右平移1个位长度,纵坐标不变
C.向左平移$\frac{1}{2}$个位长度,纵坐标不变D.向右平移$\frac{1}{2}$个位长度,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,|$\overrightarrow{AB}-\overrightarrow{AC}$|=2,D是边BC的中点,$\overrightarrow{AE}$=$\frac{1}{3}\overrightarrow{AB}$
(1)求|$\overrightarrow{AD}$|
(2)若AD与CE相交于点F.试用$\overrightarrow{AB}$和$\overrightarrow{AC}$表示$\overrightarrow{AF}$
(3)若点M是线段BC上的一点,且$\overrightarrow{AM}•(\overrightarrow{AB}+\overrightarrow{AC)}$=1,求|$\overrightarrow{AM}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x+\frac{π}{3})(x≤2010)}\\{f(x-4)(x>2010)}\end{array}\right.$则f(2009)+f(2010)+f(2011)+f(2012)=0.

查看答案和解析>>

同步练习册答案